Membrane Transport – Cell Homeostasis

Membrane Transport – Cell Homeostasis

The purpose of the lab is to simulate what happens in a cell when placed into different environments. You will learn about osmosis, a special type of passive transport, which involves the movement of water from an area of higher concentration of solutes to an area of lower concentration of solutes without the expenditure of cellular energy.

Please refer to the chapter in your text on membrane transport and cells. You will need to know the different types of transport into and out of cellular membranes.

In this lab, you will work through a simulation that involves virtually preparing different sugar solutions and dialysis tubing containing different solutions. Please go the following website to access the lab: Cell Homeostasis Virtual Lab ( https://video.esc4.net/video/assets/Science/Biology/Gateway%20Resources/cell%20homeostasis%20virtual%20lab%20-%20activity/index.html )

Warning: If you click on the “back button” on your browser, your lab will start over at the beginning!!! So pay attention to each step as you are doing it. Once you reach the end, you do NOT have to start again.

Laboratory Outline:

In this lab, you will do the following:

· Prepare different sugar concentrations using weight to weight dilutions

· Observe the effects of different concentrations of sugar in a beaker to represent the environment as compared to different concentrations of sugar in dialysis tubing to represent the cell

· Create a graph of the data and provide a screenshot of the graph

· Answer questions pertaining to these activities and the concept of osmosis and diffusion

You will complete the following questions as you progress through the lab components. Some questions will require a screen shot of the image after you have achieved locating it at the proper magnification. Please “google” your computer for specifics on performing a screen shot. Some computers use “FN” and “PrntScm,” while others use “Ctrl” and “PrtScr” then pasting into your document.

You will need to create a bar graph for this lab. If you know how to do this in excel (or similar program) please use that application and insert into this worksheet where appropriate. IF you do not, go to the following website to assist you in making a basic bar graph: Here is a very basic graph program . ( https://nces.ed.gov/nceskids/createagraph/ )

The graphing website is simplified but will give the desired results. After you create the graph, perform a print screen to add it to this worksheet for question 7.

Answer each question in another color font (do not highlight your answers). Save your document as a .doc or .docx file and upload into ecampus for grading.

Questions:

1. Explain how to make a 5% sugar solution.

2. Explain how to make a 10% sugar solution.

3. Explain how to make a 15% sugar solution.

4. Label each of contents of the 5 beakers:

A:

B:

C:

D:

E:

5. Label the contents of each of the 5 dialysis tubes:

A:

B:

C:

D:

E:

6. Calculate the difference in the initial and final masses of each of the dialysis tubes (label with grams).

A:

B:

C:

D:

E:

7. Create a bar graph showing the initial mass and final mass for each dialysis tubes. Paste that graph here (screenshot or insert excel graph). The “y” axis should indicate mass in grams, the “x” axis the tubes, label the first group “initial” and the second group “final,” and be sure the exact measurement is shown at the top of each bar.

8. Which dialysis tubes had little or no change in mass after 24 hours? Why didn’t the mass of these tubes change?

9. Why is pure water used as a control group?

10. How do you know that osmosis was the transport that took place in this lab? Describe the process and why (utilize concepts from the lecture notes/book).

© 2017 Jennifer Siemantel

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Microspcope And Cells Lab Report

Microscopes and Cells

 

PRE-LAB ASSIGNMENT:

Students are expected to watch this video (which is also posted on Blackboard): https://www.youtube.com/watch?v=  b3Eejf4rDQ

AND read pages 1 to 4 before coming to the lab to complete the experiments.

 

Print this entire lab packet and bring it to the laboratory. Please provide a FULL lab report for this experiment following the “Lab Report Guidelines”.

 

Objectives:

After completing this laboratory assignment, students will be able to:

· Identify the parts of a compound microscope.

· Properly use a compound microscope for biological studies.

· Describe the features of specific cells.

· Determine characteristics shared by all cells studied.

 

Microscopes and Lenses:

Although cells vary in size, they’re generally quite small. For instance, the diameter of a typical human red blood cell is about eight micrometers (0.008 millimeters). To give you some context, the head of a pin is about one millimeter in diameter, so about 125 red blood cells could be lined up in a row across the head of a pin. With a few exceptions, individual cells cannot be seen with the naked eye, so scientists must instead use microscopes (micro– = “small”; –scope = “to look at”) to study them. A microscope is an instrument that magnifies objects otherwise too small to be seen, producing an image in which the object appears larger. Most photographs of cells are taken using a microscope, and these pictures can also be called micrographs. From the definition above, it might sound like a microscope is just a kind of magnifying glass. In fact, magnifying glasses do qualify as microscopes; since they have just one lens, they are called simple microscopes. The fancier instruments that we typically think of as microscopes are compound microscopes, meaning they have multiple lenses. Because of the way these lenses are arranged, they can bend light to produce a much more magnified image than that of a magnifying glass.

 

In a compound microscope with two lenses, the arrangement of the lenses has an interesting consequence: the orientation of the image you see is flipped in relation to the actual object you’re examining. For example, if you were looking at a piece of newsprint with the letter “e” on it, the image you saw through the microscope would be “ə.” More complex compound microscopes may not produce an inverted image because they include an additional lens that “re-inverts” the image back to its normal state.

 

What separates a basic microscope from a powerful machine used in a research lab? Two parameters are especially important in microscopy: magnification and resolution.

· Magnification is a measure of how much larger a microscope (or set of lenses within a microscope) causes an object to appear. For instance, the light microscopes typically used in high schools and colleges magnify up to about 400 times actual size. So, something that was 1 mm wide in real life would be 400 mm wide in the microscope image.

· The resolution of a microscope or a lens is the smallest distance by which two points can be separated and still be distinguished as separate objects. The smaller this value, the higher the resolving power of the microscope and the better the clarity and detail of the image. If two bacterial cells were very close together on a slide, they might look like a single, blurry dot on a microscope with low resolving power, but could be told apart as separate on a microscope with high resolving power.

 

Both magnification and resolution are important if you want a clear picture of something very tiny. For example, if a microscope has high magnification but low resolution, all you’ll get is a bigger version of a blurry image. Different types of microscopes differ in their magnification and resolution.

 

Light Microscopes:

Most student microscopes are classified as light microscopes. In a light microscope, visible light passes through the specimen (the biological sample you are looking at) and is bent through the lens system, allowing the user to see a magnified image. A benefit of light microscopy is that it can often be performed on living cells, so it’s possible to watch cells carrying out their normal behaviors (e.g., migrating or dividing) under the microscope.

 

Student lab microscopes tend to be brightfield microscopes, meaning that visible light is passed through the sample and used to form an image directly, without any modifications. Slightly more sophisticated forms of light microscopy use optical tricks to enhance contrast, making details of cells and tissues easier to see.

 

Another type of light microscopy is fluorescence microscopy, which is used to image samples that fluoresce (absorb one wavelength of light and emit another). Light of one wavelength is used to excite the fluorescent molecules, and the light of a different wavelength that they emit is collected and used to form a picture. In most cases, the part of a cell or tissue that we want to look at isn’t naturally fluorescent, and instead must be labeled with a fluorescent dye or tag before it goes on the microscope.

 

confocal microscope is a specialized kind of fluorescence microscope that uses a laser to excite a thin layer of the sample and collects only the emitted light coming from the target layer, producing a sharp image without interference from fluorescent molecules in the surrounding layers.

 

Electron Microscopes:

Some cutting-edge types of light microscopy (beyond the techniques we discussed above) can produce very high-resolution images. However, if you want to see something very tiny at very high resolution, you may want to use a different, tried-and-true technique: electron microscopy.

 

Electron microscopes differ from light microscopes in that they produce an image of a specimen by using a beam of electrons rather than a beam of light. Electrons have a much shorter wavelength than visible light, and this allows electron microscopes to produce higher-resolution images than standard light microscopes. Electron microscopes can be used to examine not just whole cells, but also the subcellular structures such as organelles and compartments within them.

 

One limitation, however, is that electron microscopy samples must be placed under a vacuum in electron microscopy (and typically are prepared via an extensive fixation process). This means that live cells cannot be imaged.

In the image above, you can compare how Salmonella bacteria look in a light micrograph (left) versus an image taken with an electron microscope (right). The bacteria show up as tiny purple dots in the light microscope image, whereas in the electron micrograph, you can clearly see their shape and surface texture, as well as details of the human cells they’re trying to invade.

 

There are two major types of electron microscopy. In scanning electron microscopy (SEM), a beam of electrons moves back and forth across the surface of a cell or tissue, creating a detailed image of the 3D surface. This type of microscopy was used to take the image of the Salmonella bacteria shown at right, above.

 

In transmission electron microscopy (TEM), in contrast, the sample is cut into extremely thin slices (for instance, using a diamond cutting edge) before imaging, and the electron beam passes through the slice rather than skimming over its surface. TEM is often used to obtain detailed images of the internal structures of cells.

 

Electron microscopes are significantly bulkier and more expensive than standard light microscopes, perhaps not surprisingly given the subatomic particles they have to handle!

 

(Above information was adapted from Khan Academy: https://www.khanacademy.org/science/biology/structure-of-a-cell/introduction-to-cells/a/microscopy)

Please Note: Treat these microscopes with the greatest care!

 

Exercise 1: Basic Microscope Techniques

In this exercise, you will learn to use the microscope to examine a recognizable object, a slide of the letter and crossed threads. Recall that microscopes vary, so you may have to omit steps that refer to features not available on your microscope. Practice adjusting your microscope to become proficient in locating a specimen, focusing clearly, and adjusting the light for the best contrast.

 

1. Obtain the following materials:

· Clear ruler  Blank slides  2 prepared slides: letter “e” & crossed thread

· Lens paper  Kimwipes®  Dropper bottle with distilled water

· Coverslips

 

2. Clean microscope lenses.

a. Each time you use the microscope, you should begin by cleaning the lenses. Using lens paper moistened with a drop of distilled water, wipe the ocular, objective, and condenser lenses. Wipe them again with a piece of dry lens paper.

 

3. Adjust the focus on your microscope:

a. Plug your microscope into the outlet.

b. Turn on the light. Adjust the light intensity to mid-range (if your microscope has that feature).

c. Rotate the 4X objective into position using the revolving nosepiece ring, not the objective itself.

d. Obtain the letter slide and wipe it with a Kimwipe® tissue.

i. Each time you study a prepared slide, you should first wipe it clean.

e. Place the letter slide on the stage and center it over the stage opening.

 

Please Note: Slides should be placed on and removed from the stage only when the 4X objective is in place. Removing a slide when the higher objectives are in position may scratch the lenses.

 

f. Look through the ocular and bring the letter into rough focus by slowly focusing upward using the coarse adjustments.

g. For binocular microscopes, looking through the oculars, move the oculars until you see only one image of the letter e. In this position, the oculars should be aligned with your pupils. In the margin of your lab paper, make a note of the interpupillary distance on the scale between the oculars.

h. Raise the condenser to its highest position, and fully close the iris diaphragm.

i. Looking through the ocular, slowly lower the condenser just until the graininess disappears. Slowly open the iris diaphragm just until the entire field of view is illuminated. This is the correct position for both the condenser and the iris diaphragm.

j. Rotate the 10X objective into position.

k. Look through the ocular and slowly focus upward with the coarse adjustment knob until the image is in rough focus. Sharpen the focus using the fine adjustment knob.

l. You can increase or decrease the contrast by adjusting the iris diaphragm opening.

m. Move the slide slowly to the right. In what direction does the image in the ocular move? _ Left _

n. Is the image in the ocular inverted relative to the specimen on stage? __Yes__

o. Center the specimen in the field of view; then rotate the 40X objective into position while watching from the side.

p. After the 40X objective is in place, focus using the fine adjustment knob.

q. The distance between the specimen and the objective lens is called the working distance. Is this distance greater with the 40X or the 10X objective? ___10X__

r. Compute the total magnification of the specimen being viewed. To do so, multiply the magnification of the ocular lens by that of the objective lens.

i. What is the total magnification of the letter as the microscope is now set? _400x__

 

Analysis Question 1

What would be the total magnification if the ocular was 20X and the objective was 100X (oil immersion)?

This is the magnification achieved by the best light microscopes.

.

Total Magnification of a microscope can be calculated by multiplying the magnification of ocular and objective. So, 20 × 100 = 2000X

Therefore the total magnification will be 2000X.

1

 

1

 

1

 

4. Measure the diameter of the field of view. Once you determined the size of the field of view for any combination of ocular and objective lenses, you can determine the size of any structure within that field. a. Rotate the 4X objective into position and remove the letter slide.

b. Place a clear ruler on the stage, and focus on its edge.

c. The distance between two lines on the ruler is 1 mm. What is the diameter (mm) of the field of view?

d. Convert this measurement to micrometers, a more commonly used unit of measurement in microscopy (1 mm=1,000 µm).

e. Measure the diameter for the field of view for the 10X and 40X objectives, and enter all three in the spaces below to be used for future reference.

 

4X = _ 4000Nm______ 10=__ 1000Nm_______ 40=__ 500Nm________

 

Analysis Question 2

What is the relationship between the size of the field of view and magnification?

As the magnification increases the field of view decreases (The field of view specifies how much of a specimen is visble in the eyepiece. Field of view and magnification are inversely related: the higher the magnification, the narrower the field of view, and vice-versa).

 

5. Determine spatial relationships. The depth of field is the thickness of the specimen that may be seen in focus at one time. Because the depth of focus is very short in the compound microscope, focus up and down to clearly view all the planes of a specimen.

a. Rotate the 4X objective into position and remove the ruler. Obtain the slide of crossed threads, wipe it with a Kim wipe, and place the slide on the stage. Center the slide so that the region where the two threads cross is in the center of the stage opening.

b. Focus on the region where the threads cross. Are both threads in focus at the same time? Yes

c. Rotate the 10X objective into position and focus on the cross. Are both threads in focus at the same time? Yes

 

Analysis Question 3

Does the 4X or the 10X objective have a shorter depth of field?

The 10X have a shorter depth of field because is zooms in more than the 4X that gives a larger depth of field.

 

d. Focus upward (move the stage up) with the coarse adjustment until both threads are just out of focus. Slowly focus down using the fine adjustment. Which thread comes into focus first? Is this thread lying under or over the other thread? Blue Over Red

e. Rotate the 40X objective into position and slowly focus up and down, using the fine adjustment only. Does the 10X or the 40X objective have a shorter depth of field? 40X has the shorter depth

 

 

Exercise 2: Viewing Prepared Slides

1. Using the Basic Microscope Techniques from Exercise 1, view a prepared slide of an Amoeba and one of a Paramecium.

a. Draw your field of view of each objective for each slide.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. View a prepared slide of a cheek cell.

a. View the cells using the 4X and 40X objectives.

b. Draw your field of view for the 4X and 40X objectives.

c. Can you identify any organelles? If so, which ones? What is the function of the identified organelle(s)?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise 3: Preparing a Slide of Elodea 1. Prepare a wet mount.

a. Remove a leaf of Elodea.

b. Place the leaf onto a clean slide.

c. Add a drop of water to the leaf.

d. Place a coverslip over the leaf.

2. View the cells using the 4X and 40X objectives.

3. Draw your field of view for the 4X and 40X objectives.

4. Can you identify any organelles? If so, which ones? What is the function of the identified organelle(s)?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise 4: Proper Storage of the Microscope 1. Rotate the 4X objective into position.

2. Remove the slide from the stage.

3. Lower the stage all the way down.

4. Unplug the cord and wrap it around the base of the microscope.

5. Replace the dust cover.

6. Return the microscope to the cabinet using two hands; one hand should hold the arm, and the other should support the base.

7. These steps should be following every time you store the microscope.

8. Dispose of the Elodea slide according to the instructor’s directions.

9. Return all other materials to their original location.

 

Note: The results section of the lab report should include images from your field of view as well as answers to the questions asked throughout the exercises and the analysis questions.

4

 

4

 

7

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Biology 45

image18.jpg INCLUDEPICTURE “../images/lab0018banner02.jpg” * MERGEFORMAT image19.jpg

Experiment 1: Microscopic Anatomy of the Reproductive System

Visualizing the microscopic anatomy of the reproductive system will aid in your understanding of its function.

image18.jpg

Materials

Penis (Cross-Section) Digital Slide Image Testis (Cross-Section) Digital Slide Image Sperm Digital Slide Image

Ovary Digital Slide Image Uterus Digital Slide Image

Procedure

1. Examine each of the digital slide images.

2. Label the images provided at the end of the digital slide images.

image1.png

Penis (Cross-Section) 100X. The urethra is lined with stratified, squamous epithelium near the bottom of the tubule. The corpus spongiosum, which surrounds the urethra, includes blood sinuses which are often filled with blood. These sinuses are also lined with simple, squamous epithelium. The corpus cavernosa (not pictured) is located just above the corpus spongiosa, and contains erectile tissue. This tissue is filled with empty spaces which fill with arterial blood in a process called tumescense.

image2.png

Penis (Cross-Section) 1000X. Blood cells in the corpus spongiosum are visible in this image.

image3.png

Testis (Cross-Section) 100X. Testes are dense with seminiferous tubules (approximately 800- 1600 tubules per testis; or, approximately 600 meters of tubules when added together). These tubules are the site for spermatogenesis, and are lined with Sertoli cells. Septa reside between these tubules, and are comprised of connective tissue.

image4.jpg

Testis (Cross-Section) 1000X. Sertoli cells are referred to as “nursery cells” because they help create a healthy environment for spermatogenesis. These cells are directly atop the boundary tissue which surrounds the seminiferous tubules, and are ovular in shape. Meiotic activity produces, primary spermatocytes, secondary spermatocytes, and spermatids. Spermatids are located near the lumen within the tubules, and appear morphologically different based on their respective phases of maturation. Young spermatids have elongated, tail-like structures while more developed spermatids appear boxy and dense.

image5.png

Sperm 1000X. Sperm cell anatomy includes a head, a midpiece, and a flagella. The head appears dense and includes the nucleus. The midpiece has a filamentous core with many mitochondrial organelles present on the outside. The flagella is used for motility.

image6.jpg

Ovary 100X. The surface layer of the ovary is composed of a single layer of epithelium, referred to as germinal epithelium. The tunica albuginea is directly below the germinal epithelium and creates a connective tissue capsule surrounding the ovary. The outer layer of the ovary, shown above, is referred to as the cortex and is where follicles reside. Ovaries contain different types of follicle cells referred to as primordial follicles, primary follicles, secondary follicles, and tertiary follicles. A central medulla also exists within the ovary.

image7.png

Uterus 100X. The endometrium is a mucosal layer used for egg implantation, and consists of simple columnar epithelium; this includes both ciliated and secretory cells). Note that the precise composition of the endometrium varies by physiological state. The myometrium is a fibromuscular layer. Uterine glands are located in the endometrium

image8.png

Uterus 1000X. Uterine glands are lined by ciliated columnar epithelium. They function to secrete biochemical substances required for healthy embryonic development, and become enlarged after impregnation occurs in the uterus.

Post-Lab Questions

1. Label the slide images

image9.png

image10.png

image11.png

image12.png

2. What type of epithelium did you observe in the prepared slide of the penis?

3. Which layer of the uterus forms a new functional layer each month?

Experiment 1: Observation of Mitosis in a Plant Cell

image19.jpgIn this experiment, we will look at the different stage of mitosis in an onion cell. Remember that mitosis only occupies one to two hours while interphase can take anywhere from 18 – 24 hours. Using this information and the data from your experiment, you can estimate the percentage of cells in each stage of the cell cycle.

Materials

Onion (allium) Root Tip Digital Slide Images

Procedure

1. The length of the cell cycle in the onion root tip is about 24 hours. Predict how many hours of the 24 hour cell cycle you think each step takes. Record your predictions, along with supporting evidence, in Table 1.

2. Examine the onion root tip slide images on the following pages. There are four images, each displaying a different field of view. Pick one of the images, and count the number of cells in each stage. Then count the total number of cells in the image. Record the image you selected and your counts in Table 2.

3. Calculate the time spent by a cell in each stage based on the 24 hour cycle:

Hours of Stage

=

24 x Number of Cells in Stage

Total Number of Cells Counted

4. Locate the region just above the root cap tip.

5. Locate a good example of a cell in each of the following stages: interphase, prophase, metaphase, anaphase, and telophase.

6. Draw the dividing cell in the appropriate area for each stage of the cell cycle, exactly as it appears. Include your drawings in Table 3.

image13.png

Onion Root Tip: 100X

image14.png

Onion Root Tip: 100X

image15.png

Onion Root Tip: 100X

image16.png

Onion Root Tip: 100X

Table 1: Mitosis Predictions

Predictions:

Supporting Evidence:

Table 2: Mitosis Data

Number of Cells in Each Stage

Total Number of Cells

Calculated % of Time Spent in Each Stage

Interphase:

Interphase:

Prophase:

Prophase:

Metaphase:

Metaphase:

Anaphase:

Anaphase:

Telophase:

Telophase:

Cytokinesis:

Cytokinesis:

Table 3: Stage Drawings

Cell Stage:

Drawing:

Interphase:

Prophase:

Metaphase:

Anaphase:

Telophase:

Cytokinesis:

Post-Lab Questions

1. Label the arrows in the slide image below with the appropriate stage of the cell cycle.

image20.jpg image21.jpg image17.png

2. What stage were most of the onion root tip cells in? Does this make sense?

3. As a cell grows, what happens to its surface area : volume ratio? (Think of a balloon being blown up). How is this changing ratio related to cell division?

4. What is the function of mitosis in a cell that is about to divide?

5. What would happen if mitosis were uncontrolled?

6. How accurate were your time predication for each stage of the cell cycle?

7. Discuss one observation that you found interesting while looking at the onion root tip cells.

Experiment 3: Following Chromosomal DNA Movement through Meiosis

In this experiment, you will follow the movement of the chromosomes through meiosis I and II to create gametes

Materials

2 Sets of Different Colored Pop-it® Beads (32 of each – these may be any color) 4 5-Holed Pop-it® Beads (used as centromeres)

Procedure Trial 1

As prophase I begins, the replicated chromosomes coil and condense…

1. Build a pair of replicated, homologous chromosomes. 10 beads should be used to create each individual sister chromatid (20 beads per chromosome pair). The five-holed bead represents the centromere. To do this…

a. For example, suppose you start with 20 red beads to create your first sister chromatid pair. Five beads must be snapped together for each of the four different strands. Two strands create the first chromatid, and two strands create the second chromatid.

b. Place the five-holed bead flat on a work surface with the node positioned up. Then, snap each of the four strands into the bead to create an “X” shaped pair of sister chromosomes.

c. Repeat this process using 20 new beads (of a different color) to create the second sister chromatid pair. See Figure 4 (located in Experiment 2) for reference.

2. Assemble a second pair of replicated sister chromatids; this time using 12 beads, instead of 20, per pair (six beads per each complete sister chromatid strand). Snap each of the four pieces into a new five-holed bead to complete the set up. See Figure 5 (located in Experiment 2) for reference.

3. Pair up the homologous chromosome pairs created in Step 1 and 2. DO NOT SIMULATE CROSSING OVER IN THIS TRIAL. You will simulate crossing over in Trial 2.

4. Configure the chromosomes as they would appear in each of the stages of meiotic division (prophase I and II, metaphase I and II, anaphase I and II, telophase I and II, and cytokinesis).

5. Diagram the corresponding images for each stage in the sections titled “Trial 1 – Meiotic Division Beads Diagram”. Be sure to indicate the number of chromosomes present in each cell for each phase.

6. Disassemble the beads used in Trial 1. You will need to recycle these beads for a second meiosis trial in Steps 7 – 11.

Trial 1 – Meiotic Division Beads Diagram

Prophase I Metaphase I Anaphase I Telophase I Prophase II Metaphase II Anaphase II Telophase II Cytokinesis

Trial 2

7. Build a pair of replicated, homologous chromosomes. 10 beads should be used to create each individual sister chromatid (20 beads per chromosome pair). The five-holed bead represents the centromere. To do this…

a. For example, suppose you start with 20 red beads to create your first sister chromatid pair. Five beads must be snapped together for each of the four different strands. Two strands create the first chromatid, and two strands create the second chromatid.

b. Place the five-holed bead flat on a work surface with the node positioned up. Then, snap each of the four strands into the bead to create an “X” shaped pair of sister chromosomes.

c. Repeat this process using 20 new beads (of a different color) to create the second sister chromatid pair. See Figure 4 (located in Experiment 2) for reference.

8. Assemble a second pair of replicated sister chromatids; this time using 12 beads, instead of 20, per pair (six beads per each complete sister chromatid strand). Snap each of the four pieces into a new five-holed bead to complete the set up. See Figure 5 (located in Experiment 2) for reference.

9. Pair up the homologous chromosomes created in Step 6 and 7.

10. SIMULATE CROSSING OVER. To do this, bring the two homologous pairs of sister chromatids together (creating the chiasma) and exchange an equal number of beads between the two. This will result in chromatids of the same original length, there will now be new combinations of chromatid colors.

11. Configure the chromosomes as they would appear in each of the stages of meiotic division (prophase I and II, metaphase I and II, anaphase I and II, telophase I and II, and cytokinesis).

12. Diagram the corresponding images for each stage in the section titled “Trial 2 – Meiotic Division Beads Diagram”. Be sure to indicate the number of chromosomes present in each cell for each phase. Also, indicate how the crossing over affected the genetic content in the gametes from Trial 1 versus Trial 2.

Trial 2 – Meiotic Division Beads Diagram:

Prophase I Metaphase I Anaphase I Telophase I Prophase II Metaphase II Anaphase II Telophase II Cytokinesis

Post-Lab Questions

1. What is the state of the DNA at the end of meiosis I? What about at the end of meiosis II?

2. Why are chromosomes important?

3. How are meiosis I and meiosis II different?

4. Why do you use non-sister chromatids to demonstrate crossing over?

5. What combinations of alleles could result from a crossover between BD and bd chromosomes?

6. How many chromosomes were present when meiosis I started?

7. How many nuclei are present at the end of meiosis II? How many chromosomes are in each?

8. Identify two ways that meiosis contributes to genetic recombination.

9. Why is it necessary to reduce the number of chromosomes in gametes, but not in other cells?

10. Blue whales have 44 chromosomes in every cell. Determine how many chromosomes you would expect to find in the following: Sperm Cell:

Egg Cell:

Daughter Cell from Mitosis:

Daughter Cell from Meiosis II:

11. Research and find a disease that is caused by chromosomal mutations. When does the mutation occur? What chromosomes are affected? What are the consequences?

12. Diagram what would happen if sexual reproduction took place for four generations using diploid (2n) cells.

© 2013 eScience Labs, LLC. All Rights Reserved

image20.jpg

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

The Effect of Temperature and pH on Enzyme Activity

Title: The Effect of Temperature and pH on Enzyme Activity

OBJECTIVE/INTRODUCTION

The purpose of our lab was to observe how the reaction rate of an enzyme increases or decreases when combined with different substrates. Enzymes are catalysts that increase the rate of biochemical reactions. The rate of these reactions can be affected by its environment: temperature and pH. Low temperatures can cause enzyme reaction rate to become inactive or very slow by causing less collision of molecules and high temperatures can cause enzymes to denature prompting the reaction rate to lessen. As temperature increases, the rate of an enzyme-catalyzed reaction should increase. Similarly, the pH of an environment can affect the shape of an enzyme decreasing or increasing its reaction. In addition, all enzymes have a different optimal pH. As pH increases, the rate of an enzyme-catalyzed reaction should increase. In this lab, to examine the effects of temperature and pH on the reaction rate of an enzyme, we utilized potato extract (catecholase) as our enzyme combined with the substrate catechol. We utilized the Spec 20 to determine the reaction rate of enzymes under different conditions because once the enzyme and substrate are combined in the test tube the reaction begins to occur forming benzoquinone. The product benzoquinone is a brown color and the darker the color the less light will be able to pass through the test tube causing the percentage of light absorbed to increase. The absorption of light will be measured by the Spec 20 allowing us to observe the enzymes reaction rate.

MATERIALS/METHOD

Spectrometer

Pipette

Catechol

Potato Extract

Glass Tubes

This lab was a two-part lab where we analyzed the rate of enzyme reactions at different temperatures and later we looked at how pH levels are affected by enzyme-catalyzed reactions. To test the effects of temperature on enzymatic reactions, we filled 5 test tubes with 4 mL of water and 1 mL of potato extract. Then we filled another tube, which we referred to as the blank, with 1 mL of potato extract and 6ml of water (the extra 2 mL of water is added to offset the 2mL of catecholase that will be added later). From here we put all the tubes except the blank, which served as the control of the experiment, into different temperature environments. The temperatures used were 0℃, 18 ℃, 30 ℃, 40 ℃, and 60 ℃. We left the tubes in these conditions for 5 minutes before adding catechol to the tubes then we reinserted the tubes back in these temperature controlled environments for another 5 minutes. The next step after this was to test light absorbance through the use of the Photospectrometer (Spec 20). The higher the absorbance value determined the rate of the chemical reaction. For the section portion of the lab, we tried to see how pH balance affects enzymatic reaction rates. We filled the 5 tubes with 1 mL of potato extract and 4 mL of pH buffer solution. Each tube had varying pH buffer levels. The levels were pH levels of 3, 5, 7, 9, 11 and of course the blank which is our control tube was filled with 1 mL of potato extract and 4 mL of pH 7 buffer which is neutral. We then used parafilm and inverted to mix each solution and added 2 mL of catechol to all 5 test tubes. We waited 5 minutes for the chemical reaction to take place before calibrating the Spec 20 to test the absorbance.

RESULTS

Table 1: Effect of Temperature on Enzyme Reaction Rate

Sample

Temp (℃)

Absorbance after (5 minutes)

1

0℃

.167

2

18℃

.179

3

30℃

.202

4

40℃

.211

5

60℃

.112

Graph 1: Effect of Temperature on Enzyme Reaction Rate

Table 2: Effect of pH on Enzyme Reaction Rate

Sample

pH

Absorbance after (5 minutes)

1

3

.107

2

5

.121

3

7

.197

4

9

.007

5

11

.010

Graph 2: Effect of pH on Enzyme Reaction Rate

As seen in table and graph 1, the effect of temperature on enzyme reaction rate, as the temperature increased the absorbance also increased until it peaked at sample 4 with a temperature of 40℃ which had an absorbance of .211. In the last sample, sample 5 with a temperature of 60℃, the absorbance began to decrease with an absorbance of .112. In table and graph 2, the effect of pH on enzyme reaction rate, the highly acidic samples (1 and 2) had greater absorbance than the basic samples (4 and 5) which had the lowest absorbance out of all the samples. The highest absorbance was in sample 3 (absorbance of .197) which had a neutral pH of 7.

DISCUSSION (need to be done)

Directions: This section should not just be a restatement of the results but should emphasize interpretation of the data, relating them to existing theory and knowledge. Suggestions for the improvement of techniques or experimental design may also be included here. In writing this section, you should explain the logic that allows you to accept or reject your original hypotheses. Provide a conclusion based on the results that you got.

example: My hypothesis was clearly false, as some ions or cofactors had more rates of absorbency than others. This data suggested that copper is the most crucial to the enzymatic reaction as it had the lowest absorbency when bound to prevent reaction. Cofactors such as copper, calcium, and magnesium were tested by using chelating agents to bind them to prevent them from catalyzing them enzymatic reaction. As a result, their efficiency entirely depended on low absorbance rate. Since Tube 4 was the control, we would have thought that it would have the highest absorbance rate as the enzymatic reaction there were no chelating agents binding it.This may have been a possible error such as miscalculation on the portion of the mixture such as having lest EDTA chelating agents, that Tube 1 had fingerprints.There may also be possible errors such as

inaccurate timing mixing the catechol into the solution or the water bath. If this is not the case, we would suspect that there are cofactors of the enzyme that could actually slow down the enzymatic reaction rather than speeds it up. The rate of absorbance was calculated by subtracting the absorbency at 20 minutes to the absorbency at 10 minutes. I concluded this experiment may have possible errors, but suggests that copper bound by Citric acid is the most effective for the

enzymatic reaction of benzoquinone.

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"