Straighterline MEDICAL 101 Midterm Exam

01. Question number three has multiple sections. Please answer all parts

I. We know that the most common form of color blindness results from an X- linked recessive gene. A couple with normal color vision has a daughter with normal vision and a son who is color-blind. What is the probability that the daughter is a carrier for the color-blindness allele? In other words, what is the probability that the daughter is heterozygous for the trait?

II. When black pigeon is crossed with a test cross (White) pigeon gives you 100% brown pigeons. What are the genotypes and phenotypes of a cross between F1*F1

III. In the pedigree below, the shaded symbols represent people affected with a neurological disorder caused by an X-linked recessive allele. Let’s call the normal allele D and the recessive allele d. What are the genotypes of every person in this pedigree?

First generation

 

 

 

Third generation

second generation

 

 

 

 

 

 

 

IV. What are the genotype and phenotypes of the following individuals

Brown skin, Long tail * Black Skin * short tail

 

(F1) Brown skin * long tail (100%)

 

If cross F1*F1 ( what are the possible gene typical and phenotypical ratio

V. Color of the lotus flower is determined by the allele red (R ). Shape of the petals is determined by the allele long (L). Cross between two homozygous dominant and homozygous recessive gives pink lotus with flower with long petals. What are the possible genotypes and phenotypes of a cross between two pink, long petals flowers.

VI. Suppose two parents who are both heterozygous haired and heterozygous eyed produce a child.  What are the possible genotypes and phenotypes in the offspring? Black hair over blond and Black eye over blue

VII. What are the genotypes and phenotypes of possible children results in a following crosses

a) Hemophilia carrier mother and healthy father ( X linked mutation)

b) Hemophilic mother and hemophilic father

c) Healthy mother and colorblind father

d) Genetic disorder a is caused by a genetic mutation on the Y chromosome. If so, what are the genotypes of children of unhealthy father and healthy mother

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Principles of taxonomy

To introduce you to principles of taxonomy as you look at morphological characteristics of sea shells and construct an evolutionary tree.

Directions
Go to the link http://media.hhmi.org/biointeractive/click/shells_online/index.html and work through the lab sorting sea shells based on morphological characteristics to study evolutionary relationships.
Please take notes for your laboratory report. You will add an introduction later. Write a short note describing each step of identifying and selecting snails as you work through the lab. Please take a screen shot of the final drawing showing the evolutionary relationship of all snails listed.
Please answer the following questions:

Why was the scallop among the snails? (HINT: Watch “Dr. Olivera discusses major molluscan groups”)
What additional tests could be used to examine evolutionary relationships among molluscs (snail species)? (HINT: Watch “Dr. Olivera discusses how to classify shells”)
How was the name of different cone snail specied decided? (HINT: Watch the video “Dr. Olivera discusses species names”)
Where are cone snails found and what are their feeding habits? (HINT: Click on snail images on the final evolutionary tree for more information about species).
Describe the evolutionary history of snails (Molluscs). In which eon, era and period did the first snails evolve? (HINT: Textbook, chapter 14.3)
The laboratory report will have a title page (APA format), and an introduction. Summarize the life history of cone snails. List your steps to classify the snails under methods, post the final picture of snail specis under results and discuss limits of morphological classification in the discussion section of the lab report. Suggest additional tests which may clarify cone shell taxonomy. You should also have a reference section, with the textbook and web page listed in APA format.
Save your completed lab report in .rtf, .doc, or .docx format. Name it as “Taxonomy Lab Report_Your Last Name.”
Submit your lab report via the submission link above. Please only submit the completed lab report for grading.
Please review the grading rubric for the assignment for additional details and grade criteria.

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

BIOLOGY 2

Directions

Accurately measuring the volume of liquids, weighing chemicals, and adjusting the pH of solutions are routine procedures in a working laboratory environment. This assignment is designed to provide you with an overview of the general skills and knowledge you would need to perform such tasks.

Before completing this assignment, you should ensure you have read your textbook – particularly the section entitled pH, Buffers, Acids, and Bases. Answers should be concise and well written. Make sure you correctly explain your thought process and provide all the necessary information.

 

Question 1 

The pH of a solution describes its acidity or alkalinity: Describe how pH and H3O+ concentration are related and explain why diluting an acid raises the pH, but diluting a base lowers the pH.

 

Question 2

Phosphate Buffered Saline (PBS) is a commonly used buffer for experiments in biology because its pH and ion concentrations are similar to those in mammalian organisms. It works in a similar fashion to the blood plasma buffer mentioned in the textbook, but using dihydrogen phosphate ions and hydrogen phosphate ions for buffering through the following chemical reaction:

H2PO4- (aq)  ⇆  H+(aq) + HPO42–(aq)

 

The equilibrium arrows depict that the phosphate ion (H2PO4- ) is dissociating further into two component ions in solution, but at the same time H+ and HPO42- ions are combining simultaneously to form phosphate in solution. So, at any given point in time, and under the appropriate conditions, there is an equal quantity of dissolved ions and combined ions in solution. There is therefore always a hydrogen ion donor and an acceptor in solution.

 

Based on the equation above, which ion plays the role of hydrogen-ion donor (acid) and which ion plays the role of hydrogen-ion acceptor (base) in PBS?

 

Question 3

 

The composition of PBS is 0.137M NaCl, 0.012M Phosphate, 0.0027M KCl, pH 7.4. Below is the protocol to make 1 litre of 10x concentrate PBS.

Combine the following:

· 80g NaCl

· 2g KCl

· 14.4g Na2HPO4 (dibasic anhydrous)

· 2.4g KH2PO4 (monobasic anhydrous)

· 800mL distilled H2O

1. Adjust pH to 7.4 with HCl

2. Add H2O to 1L

3. Autoclave for 20 minutes on liquid cycle. Store at room temperature.

Which ions are being produced by this process, assuming that each of the chemical compounds dissociate into their constituent parts once they are dissolved in water?

Question 4

Preparation of the correct buffer is key to any good biological experiment and it is important that you understand how to calculate the mass of each chemical required to make that buffer and what the resulting concentration of those constituents will be in moles per litre.

Your text book explains that moles are just a way to express the amount of a substance, such that one mole is equal to 6.02 x 1023 particles of that substance. These particles can be can be atoms, molecules, ions etc, so 1 mole of water is equal to 6.02 x 1023 water molecules, or 1 mole of Na+ is equal to 6.02 x 1023  Na+ ions. Since different chemicals have different molecular weights (based on the number of protons and neutrons each atom contains) 1 mole or 6.02 x 1023 atoms of oxygen (O) will have a mass of 16g whereas 1 mole or 6.02 x 1023 atoms of sodium (Na) will have a mass of 23g

If you need more information on moles, please read Encyclopedia Britannica’s Moles website.

Although you may sometimes see it written as g/litre, the concentration of solutions is more often described in term of molarity since it better defines the chemical properties of a solution because it is proportional to the number of molecules or ions in solution, irrespective of molecular mass of its constituents. However, it is not possible to measure moles on a laboratory balance, so in the first instance chemicals are measured by mass (milligrams, grams, kilograms etc) and the number of moles is calculated using the known molecular mass (often called molecular weight and abbreviated to M.W.) of the chemical. As indicated earlier, the molecular mass of a chemical is based on the number of protons and neutrons that is contained in each atom (eg NaCl is made up of one molecule of Na, M.W. = 22.99g and one molecule of Cl, M.W. = 35.45g, so the M.W. of NaCl is 58.44g). These values can be found in the periodic table however the molecular mass of chemicals is generally provided by any vendors of the products and so can also be found on various suppliers’ websites.

 

When the concentrations of solutions are as described as ‘molar’, this refers to number of moles per litre eg a 3-molar solution of NaCl will contain 3 moles of NaCl in 1 litre of water. As indicated above, the M.W. of NaCl is 58.44g, so in 58.44g there are 6.02 x 1023 NaCl molecules ie 1 mole. So, for 3 moles of NaCl you would need to dissolve 175.32g in 1 litre of water (175.32/58.44 =3) whereas If you only dissolved 29.22g of NaCl in 1 litre of water this would result in a 0.5 molar solution (29.22/58.44= 0.5)

 

1. As directed you need to check the periodic table and pick up the atomic masses for each of the component atoms in the compounds. For example, for NaCl you need to pick the atomic weight of both sodium and chlorine and then add them to two decimal places to obtain the molecular mass of NaCl. Be sure to multiply the atomic masses by the number of individual atoms of the same element present in each compound before finally adding to the masses of other component atoms of other elements to make up the total molecular masses.

 

2. From there you can calculate the number of ‘moles’ of each compound by multiplying the provided weight of compound used in the PBS solution by their respective molar mass conversion factors (i.e. 1L divided by the molecular mass you have calculated in the first step)

 

3. Now, the molarity in Mol per Litre (mol/l) is given by the ‘number of moles’ of each compound (calculated in step 2 above) divided by the given volume of the solution.

For more information on how to calculate morality, refer to wikiHow’s 4 Ways to Calculate Molarity.

Using periodic table found in your textbook, calculate (to 2 decimal places) the molecular mass for each of the compounds used to make PBS.

Create the following table and fill it in with the mass of each component required to make 1 litre of 10 x PBS (the recipe for 10x PBS is below question 2) and their final molar concentration in the buffer calculated as described above.

 

Compound formula

 

 

Molecular mass (in g/mol) Mass of compound per litre of 10x PBS (in g) Molar concentration (in mol/l)
NaCl      
KCl      
Na2HPO4      
KH2PO4      

 

Question 5

As previously stated, the concentration of NaCl, KCl and Phosphate in working strength 1 x PBS is 0.137M NaCl, 0.012M Phosphate, 0.0027M KCl,  pH 7.4   How do they compare to the concentrations you calculated for 10x PBS?

 

Watch the following videos and answer the remaining questions

ï‚· “Using an Electronic Balance” from Bio-Rad tutorials

ï‚· “Using a pH Meter” from Bio-Rad tutorials

ï‚· “ Making a PBS solution ” from Community College Consortium for Bioscience Credentials

Question 6

What is the first thing to do after putting a weighing boat on the balance?

 

Question 7

If you have excess reagent on the weighing boat, what should you avoid doing and why?

 

Question 8

If you had the choice between a 1-litre beaker and a 1 litre graduated cylinder, which one should you use to measure volumes with maximal precision when making 1 litre of PBS? (you can perform an internet search to find this if you are not sure of the answer)

 

Question 9

What should be done before measuring an unknown pH of a solution using a pH meter?

 

Question 10

The recipe for PBS says to dissolve compounds in 800 ml of water, adjust the pH to 7.4, then add water up to 1 litre. The final pH should still be 7.4, because the pH of buffer solutions remains stable when they are diluted as long as the concentration of its constitutive acid and base is not too low.

 

Why do you think the protocol does not say to dissolve compounds directly in 1 litre of water?

 

Question 11

The PBS protocol above says to adjust pH to 7.4 with HCl. What does this imply on the pH of 10x PBS before adjusting the pH, would it be greater or smaller than 7.4?

 

Question 12

The last step in the protocol is to autoclave the 10x PBS solution. Why do you think this step is important? Look up the definition of autoclave if you are unsure what it means.

 

Question 13

Taking into account your response to question 5, now that you have made a 10x PBS solution, describe how you would prepare 1 litre of 1x working solution PBS, including which glassware you would use. Will you need to adjust the pH again?

 

www.UoPeople.edu

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

UMUC Biology 102/103 Lab 7: Ecological Interactions

On your own and without assistance, complete this Lab 7Answer Sheet electronically and submit it via the Assignments Folder by the date listed intheCourse Schedule (underSyllabus).

·         To conduct your laboratory exercises, use the Laboratory Manual located under Course Content. Read the introduction and the directions for each exercise/experiment carefully before completing the exercises/experiments and answering the questions.

·         Save your Lab 7Answer Sheet in the following format:  LastName_Lab7 (e.g., Smith_Lab7).

·         You should submit your document as a Word (.doc or .docx) or Rich Text Format (.rtf) file for best compatibility.

 

Pre-Lab Questions

 

1.     Would you expect endangered species to be more frequently generalists or specialists? Explain your answer.

 

2.     How does temperature affect water availability in an ecosystem?

 

3.      Choose a species and describe some adaptations that species developed that allow them to survive in their native habitat.

 

Experiment 1: Effects of pH on Radish Seed Germination

Natural soil pH depends on the parent rock material from which it was formed and processes like climate. Soil pH is a measure of the acidity or alkalinity of the soil. Acidic soils are considered to have a 5.0 or lower pH value whereas 10.0 or above is considered a strong basic or alkaline soil. The pH of soil affects the solubility of nutrients in soil water and thus it affects the amount of nutrients available for plant uptake. Different nutrients are available under differing pH conditions.

In this experiment we will look at the effect of pH on the germination and growth rate of radish seeds in order to determine the range of pH tolerance for the seed. Acidic or basic water will be used in order to stimulate acidity or alkalinity in soil.

Materials

2 mL 4.5% Acetic Acid (Vinegar), C2H4O2

Permanent Marker

(3) 5 cm Petri Dishes

3 pH Test Strips

Radish Seed Packet

Ruler

2 mL 15% Saturated Sodium Bicarbonate (Baking

 

Soda) Solution, NaHCO3

*Paper Towel Sheets (cut to fit into the petri dish)

*Scissors

*Sunny Location

*Water

*You Must Provide

   
 

 

Procedure

1.     Use the permanent marker to label the top of each of the three petri dishes as Acetic Acid, Sodium Bicarbonate, or Water.

2.     Carefully cut three small circles from the paper towel sheets. The circles should comfortably fit within the bottom of the petri dish.

3.     Place the circles in the dishes, and wet them with approximately 2 mL of each respective solution (acetic acid, sodium bicarbonate, or water).

4.     Gently press the reaction pad of three, pH test strips onto the wet paper towels. Record your data in the first row of Table 1.

5.     Arrange 10 radish seeds on each paper towel in each petri dish. Make sure the seeds have space and are not touching. Then, place the top of the petri dish on the bottom.

6.     Place the petri dishes in a sunny or well-lit, warm place. Be sure to keep the paper towels moist for the length of the experiment with the appropriate solution if any of the towels dry out.

7.     Observe the seeds daily for seven days, and record the number of seeds that germinate in Table 1. Note when the seeds crack and roots or shoots emerge). On the seventh day, record the lengths of radish seed sprouts (mm or cm).

Table 1: pH and Radish Seed Germination
Day and Initial pH Acetic Acid Sodium Bicarbonate Water
Initial pH      
Day 1      
Day 2      
Day 3      
Day 4      
Day 5      
Day 6      
Day 7      

 

Post-Lab Questions

 

1.     Compare and construct a line graph based on the data from Table 1 in the space below. Place the day on the x axis, and the number of seeds germinated on the y axis. Be sure to include a title, label the x and y axes, and provide a legend describing which line corresponds to each plate (e.g., blue = acetic acid, green = sodium bicarbonate, etc…).

 

 

 

2.     Was there any noticeable effect on the germination rate of the radish seeds as a result of the pH? Compare and contrast the growth rate for the control with the alkaline and acidic solutions.

 

 

3.     According to your results would you say that the radish has a broad pH tolerance? Why or why not? Use your data to support your answer.

 

 

 

 

4.     Knowing that acid rain has a pH of 2 – 3 would you conclude that crop species with a narrow soil pH range are in trouble? Explain why, or why not, using scientific reasoning. Is acid rain a problem for plant species and crops?

 

 

 

 

5.     Research and briefly describe a real world example about how acid rain affects plants. Be sure to demonstrate how pH contributes to the outcome, and proposed solutions (if any). Descriptions should be approximately 2 – 3 paragraphs. Include at least three citations (use APA formatting).

 

 

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"