BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid list in a vertical column 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1BIOL 1010 OPENSTAX PROJECT INSTRUCTIONS

Introduction. This BIOL 1010 OpenStax and LibGuides Project specifically concerns the topic of Genetic Engineering. The project should be completed in accordance with the requirements contained in this document. The Grading Rubric for the project is included at the end of this document to maximize your grade for this assignment.

The student should be careful to make sure that all directions are followed in completing the assignment.

MODELING RECOMBINANT DNA: HUMAN INSULIN GENE

Introduction. The manufacture of human insulin is a genetic engineering success story. Prior to the 1980’s diabetes was treated with insulin extracted from the pancreas glands of cows and pigs. While the animal-derived insulin was effective in treating diabetes, it was not structurally identical to human insulin; side effects and allergic reactions were not uncommon problems. In 1981, two U.S. companies, Genentech and Eli Lily, succeeded in inserting the human insulin gene into E. coli (Escherischia coli, a bacterium). Later, a Danish company, Novo Nordisk was able to genetically modify yeasts (single-celled fungi) for the purposes of producing human insulin. Diabetes treatment in more developed countries today is dominated by human insulin produced by genetically engineered bacteria or yeasts.

This project will model the process of genetic engineering that led to the production of human insulin by E. coli bacteria. You will be using printed paper strips to represent the DNA sequence that codes for human insulin and the bacterial plasmid into which the human insulin gene will be spliced. You will be provided with a selection of restriction enzymes that could be used to cut and splice these components. Your task will be to find the one restriction enzyme that makes the appropriate cuts so that you can splice the human insulin gene into the bacterial plasmid. You will need some simple materials to complete this project (below). Content background for this project will be found in your OpenStax textbook (chapters 9 and 10) and the BIOL 1010 LibGuides (Khan Academy pages on Molecular Biology and Biotechnology) pages at http://getlibraryhelp.highlands.edu/.

Materials needed:

White paper for printing

Colored paper (preferably a lighter color) for printing

Clear tape

Business-sized envelope

Highlighter marker

Scissors

Ruler

Preparation. Before you start your project (instructions under Task below), you will want to become familiar with the process of recombinant DNA using restriction enzymes and plasmids. Be sure that you use the following as resources:

OpenStax Concepts of Biology, chapter 9.

OpenStax Concepts of Biology, chapter 10.

LibGuide (Molecular Biology, Khan Academy) at http://getlibraryhelp.highlands.edu/

LibGuide (Biotechnology, Khan Academy) at http://getlibraryhelp.highlands.edu/

Task.

Your ultimate goal: generate a bacterial plasmid that contains the entire human insulin gene. There are other conditions that must be met for success. Read the instructions carefully! Your ability to follow instructions will be critical to your success! All necessary files for printing the DNA sequence, plasmid sequence, and restriction enzymes will be found on D2L in the OpenStax Project folder.

Step 1. Assemble the DNA sequence. You will generate a paper model of a human DNA sequence that contains the human insulin gene.

A. Print the DNA SEQUENCE pages (source: D2L) on colored paper (preferably a light colored paper) – the color is your choice. You will notice that the DNA sequence consists of A’s, C’s, G’s, and T’s in pairs. In other words, there are two parallel strands of nucleotides, one is the template strand, and the other is the coding strand. The sequence is oriented vertically and each strand is read from top to bottom.

B. Using a ruler, draw parallel lines vertically so that each sequence can be cut into Ÿ” wide strips; you want your DNA SEQUENCE to look nice-and-neat when you are finished.

C. Cut out the Ÿ” strips that are found on the DNA SEQUENCE pages.

D. Tape the strips (10 of them) together in order (as shown below).

1 2 3 4 5 6 7 8 9 10

Ÿ”

[Be sure to tape the strips so that the sequence is continuous; the strip numbers and the 3’/5’ designations should not show when two adjoining strips are taped

together
the entire strip should be an uninterrupted series of A’s, C’s, G’s, and T’s in pairs.

E. Note that the human insulin gene is represented by the bold print sequence on the strip. Your completed DNA SEQUENCE should contain the bold print insulin gene flanked on either side by “unbold” sequences.

Step 2. Assemble the plasmid sequence. You will generate a paper model of a bacterial plasmid.

A. Print the PLASMID page (source: D2L) on white paper. You will note that the plasmid sequence looks just like the DNA sequence in Step 1.

B. Using a ruler, draw parallel lines vertically so that each plasmid sequence can be cut into Ÿ” strips. You will notice four bracketed abbreviations on your plasmid sequence. While these are not critical to your final presentation, you will want to make a deviation in your cutting so these bracketed abbreviations stay on your plasmid.

C. Cut out the strips that are found on the PLASMID page and tape them together (the order of the strips is not important) to form a circle.

Step 3. Obtain your restriction enzymes. You will print and cut out 8 different restriction enzymes. One of these enzymes will be chosen to cut the plasmid and the insulin gene so that the insulin gene can be spliced into the plasmid.

A. Print the RESTRICTION ENZYME page (source: D2L)
 the color of paper does not matter.

B. Cut out the individual enzymes
you should have a total of 8 individual enzymes. You will note that each RESTRICTION ENZYME makes a cut (dotted line) associated with a specific sequence of nucleotides.

Step 4. Marking where the restriction enzymes cut the DNA and the plasmid. It is time to determine which of the 8 restriction enzymes will be able to work for you in genetically engineering this bacterium. You will begin by marking where each restriction enzyme will cut the DNA sequence (specific instructions are found in steps A-D. Then, mark the plasmid in the same way for each of the 8 restriction enzymes. [Your restriction enzyme cards will be used as a guide for marking where the cuts will occur on both the DNA SEQUENCE strip and the PLASMID; the dotted line on each restriction enzyme card indicates where the cut is to be made].

HINT: STEP C IS CRITICAL TO YOUR SUCCESS AT THIS POINT!

A. Take your DNA SEQUENCE strip and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme on the DNA SEQUENCE strip).

B. Take your PLASMID (circle) and mark the locations of cuts for each of your 8 RESTRICTION ENZYMES (use a pencil – be sure to identify the cut with the name of the enzyme).

C. Look carefully at the cut locations on your DNA SEQUENCE and PLASMID. You need to identify the one RESTRICTION ENZYME that both

a. Cuts the PLASMID at only one location, and

b. Cuts the DNA SEQUENCE strip on either side of the insulin gene without cutting into the insulin gene.

D. Be sure to keep the appropriate RESTRICTION ENZYME; do not lose it. The appropriate RESTRICTION ENZYME will be submitted with the completed project.

IMPORTANT: Please be aware of the fact that some of the restriction enzymes will not work. You need to be concerned with marking the locations of the cuts for the restriction enzymes that do work!

Step 5. Cut and splice time. Using your specific RESTRICTION ENZYME identified in Step 4 as a template, you will make a single cut in the PLASMID and two cuts in the DNA SEQUENCE. Make your cuts carefully! The Human Insulin Gene (cut from the DNA SEQUENCE) will then be spliced into the cut PLASMID.

A. Make the appropriate cuts identified in Step 4. C above. You will note that the cuts make “sticky ends” that will be complementary to the other cut ends. Here is an example of how two sticky ends can be joined together in a complementary DNA sequence (below – note that the two sticky ends join in such a way as the base pair combinations CG/AT are maintained).

AGTC + CGGTACCGTAC AGTCCGGTACCGTAC

TCAGGCCAT GGCATG TCAGGCCATGGCATG

sticky end sticky end sticky ends joined together

B. Open the PLASMID and splice the cut ends of the DNA SEQUENCE strip into the PLASMID. Use tape to fix the splices in place. You have created a RECOMBINANT PLASMID. Your result should be a circle of DNA that includes the original PLASMID (white strip) and the DNA SEQUENCE (colored strip) featuring the complete Human Insulin Gene (in bold print).

Step 6. Get ready to hand in your genetically engineered plasmid. A portion of your grade depends on you following these directions carefully.

A. Carefully fold your RECOMBINANT PLASMID so that it will fit into a #10 standard business-sized envelope. It must be folded neatly!

B. Do not seal the envelope.

C. Tape the appropriate RESTRICTION ENZYME TO THE BACK OF THE ENVELOPE and write your name on the front of envelope.

Step 7. Answer Questions 1-7. Questions 1-6 should be submitted as one hardcopy document with “BIOL 1010 OpenStax and LibGuides Project: Questions 1-6” as the title. Question 7 will be submitted as a separate document (see instructions for Question 7 below).

1. What are plasmids? Where are they found? Why are they important to the practice of genetic engineering?

2. Do plasmids have an importance beyond the practice of genetic engineering? Explain.

3. What are restriction enzymes?

4. You might wonder why we might have and origin of replication indicated on the plasmid. What is the origin of replication and why is it important to the genetic engineering process?

5. You might wonder why there are antibiotic resistance genes in the plasmid [genes that codes for resistance to specific antibiotics). Hint: “The antibiotic resistance genes will be used for screening purposes.” What could this mean? Explain.

6. Why would you want your restriction enzyme to cut as close as possible to the insulin gene without cutting into it?

7. [IMPORTANT: YOUR RESPONSE TO THIS QUESTION #7 WILL BE SUBMITTED AS A SEPARATE DOCUMENT] The Human Insulin Gene is a sequence of DNA that ultimately codes for amino acids of specific identities in a specific order. Since DNA is a double-stranded molecule, there are two complementary sequences present: the template strand and the coding strand. From the Human Insulin Gene sequence in your RECOMBINANT PLASMID, you should be able to generate a list of the appropriate amino acids in the correct order. All you will need is a codon chart; a chart that cross-indexes codons with amino acids (OpenStax Concepts of Biology, Figure 9.20, p.220). You will submit this response (#7) on a separate piece of paper with “#7 HUMAN INSULIN: AMINO ACID SEQUENCE” centered at the top of the page. The amino acids should be listed in a vertical column (or columns, if needed). Be sure to list the amino acids by their standard three-letter abbreviation. For example, your first amino acid will be Met (methionine).

Step 8. Handing it all in! You will need a large (10 x 13) manila envelope. On the front of this envelope, you will print:

· Your name, and

· BIOL 1010 OpenStax and LibGuides Project.

You will place in this envelope:

· Your #10 standard business-sized envelope containing the engineered plasmid,

· Your document: BIOL 1010 OpenStax and LibGuides Project: Questions 1-6, and

· Your document: “#7 HUMAN INSULIN: AMINO ACID SEQUENCE”.

Do not seal the large envelope. Just be sure that the three required items (above) are placed securely and completely inside.

Submit the labeled 10 x 13 envelope and its contents to your instructor on the date indicated in the course syllabus.

THE OPENSTAX PROJECT GRADING RUBRIC

10 x 13 manila envelope 1 _____


appropriately labeled (per instructions) 1 _____

Business-sized envelope with name 1 _____

Restriction enzyme taped to back of envelope 1 _____

Envelope not sealed 1 _____

Recombinant plasmid in envelope 1 _____

Recombinant plasmid folded 1 _____

Recombinant plasmid a complete circle 1 _____

Restriction enzyme chosen is correct 3 _____

Recombinant plasmid contains insulin gene 3 _____

Insulin gene is complete 3 _____

Splices are consistent with the enzyme’s sequence 3 _____

Questions 1-6 separate document 1 _____

Title for Questions 1-6 (per instructions) correct. 1 _____

Question 1 10 _____

Question 2 10 _____

Question 3 10 _____

Question 4 10 _____

Question 5 10 _____

Question 6 10 _____

Question 7 (Human Insulin Gene: Amino Acid Sequence)


Separate document 1 _____

Title for Question 7 (per instructions) correct 1 _____

Amino acid list present 1 _____

Amino acid abbreviations present 1 _____

Amino acid abbreviations appropriate 1 _____

First amino acid is correct 3 _____

Amino acid sequence is correct 3 _____Amino acid list in a vertical column 1 _____

Last amino acid is correct 3 _____

Appropriate number of amino acids 3 _____

TOTAL 100 _____

1

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Lab 2 Effect Of High Levels Of Glucose On Cells

Lab 2 Effect of High Levels of Glucose on Cells

Materials

2, 1 cm thick slices of zucchini or other high water content vegetable

Normal Saline

Petri dish

Paper towels

Honey

Electronic scales

Weighing boats

 

Procedure

1. Collect the materials.

2. Place a zucchini slice on each half of the petri dish.

3. Place the weighing boat on the scale. Tare the weight.

4. Blot each zucchini slice with a paper towel.

5. Weigh each slice in a weighing boat and record the weight on the data sheet.

6. Place about Œ tsp of honey on one of the zucchini slices.

7. Place enough normal saline to cover the second zucchini slice.

8. Observe what happens at five minute intervals for 20 minutes

9. Blot the zucchini slices to remove honey/saline.

10. Place in the weighing scale (Don’t forget to tare the weight of the weighing boat.)

11. Record the weight on the data sheet.

 

Condition Zucchini with Honey Zucchini in Normal (Isotonic) Saline
Initial Weight 7.24 7.26
Final Weight 7.78 7.04
Difference 0.54 0.22
% change* 7.45% -3.03%

 

 

% change in weight = (current weight – initial weight) X 100

initial weight

 

Example: Egg Initial weight of 50g and final weight of 40g

% change in weight = (40 -50)/50 or -10/50 or -.20

-.20 X 100 to convert the decimal amount to % = -20% (minus 20% change)

 

 

View the Post-Lab Powerpoint

Graph your data (directions in the post lab Powerpoint).

 

 

 

 

 

 

 

 

 

 

 

 

Analyze your data and interpret your findings. You should refer to your book and the prelab and post lab information to help you answer these questions.

1. Describe what happened to the slice in each solution.

It ]has gotten very stiff to turgor pressure increasing .

 

 

 

 

2. How does the concept of osmosis explain your finding for both solutions?

 

 

 

 

 

 

 

3. Why is normal saline considered to be an isotonic solution?

 

 

 

4. What is the tonicity of the honey? Explain your answer.

 

 

 

 

 

5. Explain why a symptom of uncontrolled diabetes mellitus causes diuresis.

 

 

 

 

 

 

 

 

 

 

 

6. Explain why normal saline is used in IV solutions instead of pure water.

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Medical Project

Graded Project

Medical Transcription 1

 

 

© PENN FOSTER, INC. 2017 PAGE 1MEDICAL TRANSCRIPTION 1 Graded Project

CONTENTS OVERVIEW 2

INSTRUCTIONS 2

HOW TO COMPLETE THE ASSIGNMENTS 2

GRADING CRITERIA 3

SUBMITTING YOUR PROJECT 4

 

 

© PENN FOSTER, INC. 2017 PAGE 2MEDICAL TRANSCRIPTION 1 Graded Project

MEDICAL TRANSCRIPTION 1

OVERVIEW It’s now time to complete yourgraded project. To complete and submit your required transcriptions, follow the instructions provided.

INSTRUCTIONS You’re required to complete and submit the assignments below. To access the recorded dictations and transcribed reports, go to your student portal. Next, click the Files for Medical Transcription 1 Graded Project link.

1. Transcription Assignment 1: Letter 2

Access the recorded dictation as provided and prepare the letter. Be sure to transcribe the letter as dictated.

2. Transcription Assignment 2: Letter 7

Access the recorded dictation as provided and prepare the letter. Be sure to transcribe the letter as dictated.

3. Editing Assignment 1: Letter 11

Access the transcribed letter and audio file, and edit the letter for errors in spelling, punctuation, grammar, and letter format.

4. Editing Assignment 2: Letter 21

Access the transcribed letter and audio file, and edit the letter for errors in spelling, punctuation, grammar, and letter format.

HOW TO COMPLETE THE ASSIGNMENTS 1. Type or proofread each letter in the order given.

2. Review your work carefully. For the transcription assignments, it’s a good idea to replay your file and listen to it as you read each report. You’ll be able to catch any errors and reinforce your terminology at the same time. Don’t rely on a computer spell checker. For the proofreading and editing assignments, reread the document to find additional errors you may have missed. It may also help to read the document aloud to catch any mistakes you might have missed.

 

 

© PENN FOSTER, INC. 2017 PAGE 3MEDICAL TRANSCRIPTION 1 Graded Project

3. Be sure to include your name, student number, Medical Transcription 1 Graded Project, and examination number (03983600). In addition, include the title of the assignment in the top right corner. For example, the titles of the assignments you’ll submit are as follows:

n Transcription Assignment 1: Letter 2

n Transcription Assignment 2: Letter 7

n Editing Assignment 1: Letter 11

n Editing Assignment 2: Letter 21

4. Single-space the bodies of the reports to be submitted.

5. Follow the exact format provided in the dictated recording. Use your initials and the current year for submitted reports.

6. If you can’t understand a word or phrase in the dictation, check your medical dic- tionary and the terminology section of the corresponding chapter in your textbook. If a word has already been given in the terminology section of a previous chapter, it will be used again without being listed—once you use a word, you’re expected to remember it. You may have to check earlier chapters’ lists to find the word. Also check the lists of medical terms and the lists of drugs, instruments, tests, and other terms in the Appendix.

7. If you’re still unable to transcribe the word, make an educated guess. If you can’t transcribe a word, it’s better to leave a blank space on your dictation and properly flag the missing entry than to guess and use the wrong word. Please refer to your textbook for information on proper flagging.

SUBMITTING YOUR PROJECT You must submit these four letter assignments in ONE word-processing document and not as individual files in a folder. If you’ve completed the assignments as individual docu- ments, you’ll need to copy and paste all assignments into ONE word-processing document. Acceptable formats for submitting your work include Microsoft Word documents (.doc and .docx) or Rich Text Format (.rtf). No other format is to be used for submitting this project.

n Transcription Assignment 1: Letter 2

n Transcription Assignment 2: Letter 7

n Editing Assignment 1: Letter 11

n Editing Assignment 2: Letter 21

Each assignment is individually graded by your instructor and therefore takes up to a few weeks to grade.

 

 

© PENN FOSTER, INC. 2017 PAGE 4MEDICAL TRANSCRIPTION 1 Graded Project

Be sure that your document contains the following information:

n Your name

n Your student ID number

n The lesson number (03983600)

n Your email address

To submit your exam online, follow these steps:

1. On your computer, save a revised and corrected version of your exam. Be sure to include your student number and exam number on your saved document.

2. Go to http://www.pennfoster.edu and log in.

3. Go to your student portal.

4. Click on Take Exam next to the lesson you’re working on.

5. Enter your email address in the box provided. (Note: This information is required for online submission.)

6. Attach your exam as follows:

a. Click on the Browse box.

b. Locate the file you wish to attach.

c. Double-click on the file.

d. Click on Upload File.

7. Click on Submit Files.

Follow these steps to submit ONE word-processing document (Microsoft Word or Rich Text Format) containing all four assignments. Be sure to keep a backup copy of the document you submit to the school!

GRADING CRITERIA The following errors will be marked in all of the transcription exams.

n Missing paragraph—10 points

n Missing sentence—5 points

n Missing word error—1 point

n Misspelled word—3 points

n Missing word flagged appropriately—1 point

n Spelling or word usage error—3 points

 

 

© PENN FOSTER, INC. 2017 PAGE 5MEDICAL TRANSCRIPTION 1 Graded Project

n Format/appearance errors—No points are deducted but the grader will indicate format errors. Examples of format errors include the following:

1. An incorrect capital or lowercase letter

2. Word should have been abbreviated if it was typed out or it should have been typed out if it was abbreviated.

3. Incorrect spacing within the transcription

4. A new paragraph should have been started.

5. Incorrect indention under a heading, especially in numbered lists

n Punctuation errors—No points are deducted but the grader will indicate punctuation errors such as a missing period (.), quotation marks (“ ”), semicolon (;), colon (:), or hyphen (-), or that a punctuation mark shouldn’t have been inserted.

n Comment balloons are used by the graders as needed to provide additional feed- back for you to review.

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Primate Anatomy & Taxonomy

Name: ______________________________________  Section: ___________

ANT 3514C – Introduction to Biological Anthropology

Lab 6: Primate Anatomy & Taxonomy

Lab Objectives:

‱ Evaluate the dental formula of an unknown primate and place it within a major clade

‱ Interpret the difference between gradistic and cladistic methods of grouping primates

‱ Identify the anatomical synapomorphies that distinguish the major primate clades

‱ Draw a cladogram to illustrate the modern, broadly-accepted primate phylogeny

Purpose: To examine the skeletal traits that distinguish the major primate clades.

The study of non-human primates has been recognized since ancient times as relevant to understanding human anatomy. This was perhaps best recognized by a wide audience of scholars for the first time in 1735 when Carolus Linnaeus, despite his strong creationist views, included humans with other apes and monkeys in the group Anthropomorpha. By the tenth edition of his Systema Naturae in 1758 he had abandoned this term and began calling the group by the familiar name we now use: Order Primates. Linnaeus was motivated to group humans with other primates because of the many anatomical similarities that he perceived uniting them. In modern biological terms, we now refer to these structures as synapomorphies, or ‘shared derived traits.’ For instance, all primates have a broad, flat nail on their big toe, which is a structure unlike any of the narrow claws found in other mammals. We use synapomorphies like these to reconstruct patterns of shared ancestry and build cladograms to better understand the pattern of primate evolution and where humans belong in it. This method of reconstructing relationships between taxa based on shared derived characteristics is known as cladistics.

While morphology and phylogeny have shared a close relationship for centuries, the reliance on synapomorphies to group organisms is relatively recent. In the early 20th century, primatologists such as Wilfrid Le Gros Clark (famous for helping to debunk the Piltdown Man fraud) grouped primates based on their overall similarity in appearance. This method was reminiscent of Aristotle’s “Great Chain of Being,” with primitive primates at the base and humans at the apex. This way of thinking has been called gradistic, because it suggests primate evolution proceeds in a simple, uniform direction for all traits from primitive to derived. While this system has intuitive appeal, it does not correspond with the way we think evolution proceeds. Modern primatologists and anthropologists use cladistic methods based on a nested hierarchy of synapomorphies, because we believe these more accurately reflect how evolution works.

Although phylogenetic trees are built today using cladistic methods, it is clear that gradistic thinking still subconsciously underlies much of our approach to reconstructing evolution. You may have already noticed that phylogenetic trees that include humans tend to place them at one extreme end of the tree, implying some directionality or end goal to evolution, even though there is no reason they need to be placed there! Within the primate order the shift from gradistic to cladistic thinking has impacted how we perceive the relationships of many taxa, most notably the tarsier, which we will investigate more in Station 3. You will be exposed to more examples of gradistic thinking when looking at the human fossil record, where many features (such as brain size) are continuous, and identifying synapomorphies can be particularly difficult. For this lab we will investigate many of the important skeletal synapomorphies that define the largest primate clades.

Station 1: What defines a primate? (0.6 pt.) 

A college happened upon a mystery skull while looking through a mammalian skeletal collection. She thinks it may be a primate and comes to you for your expert opinion. She cannot mail you the skull so she emails youaeveral photos. Examine the photos below. Use the list of primate features (found in the lab reading for this week) to help you make the distinctions.

!1

Station 2: Dentition (2 pts.) Different primate clades can be identified by their dental formulae. Primates have 2 incisors, and 2-3 premolars (except the aye-aye, which has a very unusual dentition). Most other mammals have either more or fewer teeth. For the following questions, first determine the dental formula, then consider the cusp pattern.

! !

!   !

1. Write the dental formula for each of the craniums or mandibles provided:

A)

B)

C)

D)

E)

2. Answer the following questions using the above dental formulae and the written/illustrated materials provided:

a) Which specimen is not a primate? How do you know?

b) Which specimen is a New World monkey? How do you know?

c) Does specimen “E” have the bilophodont or Y-5 molar cusp pattern? Based on this cusp morphology and its dental formula, what primate group does this specimen belong to?

d) Which mandible is human? What traits did you use to make your identification?

e) Which specimens are apes? How do you know? (Hint: you are an ape)

Station 3: Strepsirrhini and Haplorhini (2 pts.)

Using the handouts, images, and websites, complete the following table illustrating some of the important morphological differences between each primate group.

Strepsirrhine: http://eskeletons.org/boneviewer/nid/12540/region/skull/bone/cranium  http://humanorigins.si.edu/evidence/3d-collection/primate/loris-malaysia-usnm-84389  http://humanorigins.si.edu/evidence/3d-collection/primate/loris-malaysia-usnm-84389-0  Haplorrhine: http://eskeletons.org/boneviewer/nid/12538/region/skull/bone/cranium

http://humanorigins.si.edu/evidence/3d-collection/primate/gorilla-rwanda-usnm-396937-beringeicranium 

with primitive primates in a grade called “Prosimia.” They are now grouped with monkeys and apes in a

Examine the tarsier skull (http://www.eskeletons.org/boneviewer/nid/12544/region/skull/bone/cranium) and study the table. Tarsiers can be placed in the prosimian grade or in the haplorhine clade. Name one primitive, prosimian feature that tarsiers retain and one derived, haplorhine feature that they possess. Add which of these features is a synapomorphy, and which is a symplesiomorphy.

Prosimian feature:         Haplorhine feature:

 

2) Does the mystery skull at this station belong to a strepsirrhine or a haplorhine primate? List at least one trait which helped you determine this.

!

 

Station 4: Platyrrhini and Catarrhini (1.6 pts.)

The Haplorhine suborder is divided into two infraorders: Anthropoidea (Monkeys and Apes) and Tarsiiformes (tarsiers). Anthropoidea is further divided into two parvorders: Platyrrhini and Catarrhini. Platyrrhines are native to Central and South America (the ‘New World’) and Catarrhines are native to Africa, Europe, and Asia (the ‘Old World’).

Platyrrhine: http://eskeletons.org/boneviewer/nid/12546/region/skull/bone/cranium  Catarrhine: http://eskeletons.org/boneviewer/nid/12547/region/skull/bone/cranium   http://humanorigins.si.edu/evidence/3d-collection/primate/baboon-usnm-258502 http://humanorigins.si.edu/evidence/3d-collection/primate/baboon-usnm-258502-0

1) Based on what you’ve learned so far, identify what group the following “mystery primate” skulls belong to. To receive credit, list the character(s) you used to make your identification. 

!

!

A) Is “A” a platyrrhine or catarrhine? How do you know?

B) Is “B” a platyrrhine or catarrhine? How do you know?

2) What advantages might there be to having a prehensile tail for an arboreal primate?

Station 5: Cercopithecoidea and Hominoidea (1.8 pts.)

Within Catarrhini are the two superfamilies Cercopithecoidea (Old World monkeys) and Hominoidea (apes). Use the table below to describe the features of each in relation to the other.

Cercopithecoid: http://eskeletons.org/boneviewer/nid/12547/region/skull/bone/cranium  http://humanorigins.si.edu/evidence/3d-collection/primate/baboon-usnm-258502 http://humanorigins.si.edu/evidence/3d-collection/primate/baboon-usnm-258502-0 Hominoid: http://eskeletons.org/boneviewer/nid/12549/region/skull/bone/cranium

http://humanorigins.si.edu/evidence/3d-collection/primate/siamang-indonesia-usnm-114497

1) Which two traits in the above table would be the most useful for determining if an animal was a cercopithecoid or a hominoid in the fossil record? Hint: think about discrete (traits which are either present or absent) vs. continuous traits.

2) List one human autapomorphy – a trait that humans have to the exclusion of all the other primates. Hint:

think about what makes humans unique within the order Primates.

Exercise 2: Systematics and Primate Phylogeny (2 pts.) 

Below is a hypothetical phylogeny for six different taxa (A–F). In the phylogeny, the appearance of a new character is represented as a number in a circle. For instance, Character 3 evolved sometime after the common ancestor of Taxa D, E, and F diverged from the common ancestor these taxa share with Taxon C. Character 3 would therefore be a shared, derived trait, or synapomorphy of taxa D, E, and F.

! 

A) Which character is a synapomorphy of E and F?

B) Is Character 1 a synapomorphy or a symplesiomorphy for taxa C and D?

C) Is Character 1 useful for reconstructing the relationship between C and D? Why or why not?

D) Of the 5 characters listed, which represents an autapomorphy?

Study the primate phylogeny in your textbook and fill in the blanks below. Be mindful of spelling: some names are very similar, but have different meanings!  If you are having difficulty filling out the phylogeny, you may print out the last page, neatly handwrite the answers in the blanks, and paste a picture of the phylogeny back into the document.

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"