Biology Manuscript

Biology 1108L Laboratory Exercises: Variation in Natural Systems

 

Kennesaw State University Department of Ecology, Evolution, and Organismal Biology

 

LABORATORY Ecology: Variation within Ecological Communities

due to Secondary Succession

 

 

 

 

 

OVERVIEW OF LAB Observations: Forests within the same region often vary dramatically in species composition. This is easily observed within Cobb County, where the variable abundance of pines and hardwoods (deciduous trees) is readily visible in forest patches on campus or along the highway. One explanation for these differences comes from changes in species composition that occur over decades. In many ecosystems, species composition changes over time in fairly predictable ways. This process is known as ecological succession. For many forest patches in this region, the last major disturbance was agriculture. By the early 20th century, most of the land in the region was farmed with cotton as the major crop. Severe soil erosion and infestations of the cotton boll weevil made farming unprofitable, and much of the land has slowly returned to forest. Loblolly Pine seedlings are able to colonize bare mineral soil, grow tall very quickly, and grow well in full sun. However, seedlings cannot survive for long in the shade of other trees and are absent from the forest interior. By contrast, oaks and most other hardwood seedlings will only colonize areas where organic material has had time to accumulate under existing trees, and oak seedlings gain height more gradually over time while surviving for extended periods in the shade. These characteristics mean that Loblolly Pines should densely colonize abandoned agricultural land much faster than hardwoods, but the understory will soon become too shaded for future Loblolly Pine seedlings to establish. As soon as organic matter such as rotting pine needle littler begins to accumulate, shade tolerant hardwood seedlings can begin to move in and will gradually overgrow the Loblolly forest as shown in the diagram below.

1st year 2nd year year 3 to 18 year 19 to 30 year 31 to 70 year 71 to 100 100+ years (http://dukeforest.duke.edu/forest-environment/forest-succession/) Through secondary growth, tree trunks increase in diameter every year. Grown under similar conditions (soil nutrient, light, and water availability) a 100 year-old tree should have a significantly larger circumference than a 50 year-old tree. However, since hardwood seedlings can survive in the shade, there will always be a range of smaller trees regenerating under a hardwood forest regardless of the time since the last disturbance (see diagram below). While there should never be tree trunks as large as the 100 year-old trunks in the 50 year-old forest, some 50 year-old trees are expected be found within a 100 year-old forest. Therefore, the largest hardwood trees are often the best indicators of the age of a forest since the last major disturbance.

Deleted: ¶

Deleted: These characteristics mean that Loblolly Pines should colonize abandoned agricultural land much faster than hardwoods, but the understory will eventually become too shaded for future Loblolly seedlings to establish. As soon as organic matter (rotting pine needle litter) begins to accumulate, rot, and enrich the soil, shade-tolerant hardwood seedlings can begin to move in and will gradually overgrow the Loblolly forest as shown in the diagram below ¶

 

 

 

 

Trunk cross-sections from a Trunk cross-sections from a 50 year-old hardwood forest 100 year-old hardwood forest Remnants of an old fenceline run through the Kennesaw State Arboretum, separating the forest into roughly an upslope and a downslope portion. Your task will be to investigate whether there is evidence these forests differ significantly in time since the last disturbance by determining if they are at different stages of secondary succession. We have measured tree size and type within the two forest sections to allow you to test the following predictions that we expect to be true if the forests are of different ages:

The forests will differ in the size of the oldest hardwood trees.

The forests will differ in the proportion of mature hardwoods relative to pines. SAMPLING IN FOREST AREAS A AND B The class will be divided into several groups, and each group will sample plots in one of two different forest areas (upslope or downslope). Your instructor will show you the general areas within which plots (quadrats) will be established and sampled. Ropes have been divided into 10 meter units. To establish a 100 square meter plot, stretch a rope out on the ground in a square with the 10 m marks on the rope (either large knots or flagging tape) as the corners. Make sure your quadrats don’t overlap a path. Each group will collect data in five 100 m2 quadrats upslope or downslope as follows: – In order to estimate the relative “time since a major disturbance”, we will

measure the circumference of all pine and hardwood trees found in the quadrats.

– In order to determine how these two successional stages differ in species composition, we will count all pines and all hardwood trees in each plot.

– By looking at the composition of younger trees, we will make predictions as to what the forest composition will be in the future as succession continues to progress.

– Make note of any recently sprouted pine or hardwood seedlings and saplings growing in your plots. Summarize what you find in the research manuscript.

Deleted: ¶ ¶

Formatted: Underline

Deleted: older forest stand that has had more time to progress through succession since the last major disturbance will have a higher proportion of mature hardwoods relative to pinesforests will differ in the

 

 

 

There are lots of shrubs and other shorter plants in the plots, so it is important that we first define what constitutes a “tree” versus a shrub. When measuring all the trees in your plot, make sure they fit the following criteria:

1. Must have an obvious single trunk up to at least 10 ft off the ground 2. Must be at least about 25 cm circumference at chest height (~3 inches

across in diameter). Make all measurements at chest height, and be sure to make all circumference measurements in centimeters!!!!!!!!! Be sure at least one member of your group turns in the group’s data before the end of lab. Your instructor will compile the data and post it to D2L. DATA ANALYSIS You will be analyzing data collected independently in two different lab sections. The data will be provided as an excel spreadsheet in D2L. In order to determine whether there is a significant difference in the size of the oldest hardwood trees, you will be conducting a test with which you should be familiar from the Fish Lab earlier in the semester- the t-test. T-tests determine whether there is a significant difference between the mean of two different distributions. In this case, you will be comparing the mean circumference of the top 10 largest trees upslope vs. downslope. Next, you will do the same comparison with the top 25 largest trees upslope vs. downslope. Usually in statistics, a larger sample size is preferable. In this case, we are trying to capture the oldest trees in each forest patch. Why might a larger sample size be worse than a smaller sample size in this case? Making a column chart comparing the top 25 tree circumferences from each forest patch (see below) may help you visualize the reason why. As a control experiment, you will be comparing data from two different lab sections within the same forest type. The chances that students set up their quadrats in the same 10 x 10 m spots in two different sections is pretty minimal. However, when you compare upslope data from both sections, hypothetically you are comparing datasets from forest patches that should be the same age. Any difference you see should be due to random chance. Do you expect a high or low p-value if you compare upslope data from two different sections? To determine whether the forests differ in the proportion of mature hardwoods relative to pines, you will be employing a different test, the Fisher’s Exact Test. In this test, a two by two contingency table is constructed with two categories: upslope vs. downslope, and pines vs. hardwoods. The p-value in this test tells you the percent probability that you’d see the given distribution across the four categories in the table (upslope pines, upslope hardwoods, downslope pines, downslope hardwoods) by random chance. If the number of pines vs. hardwoods is contingent on whether you are upslope or downslope, there should be a low probability that the distribution is due to chance alone. In this case, more data might be better, so you will also test whether combining the data from both sections strengthens or weakens the hypothesis that the proportion of pines and hardwoods differs between the upslope and downslope forest patches.

Deleted: ¶ ¶

Page Break ¶

 

 

 

Ecology Research Manuscript: This assignment is to be done individually; the assignment will be checked against the turnitin.com database for plagiarism. If you are retaking this course, using your own manuscript from a previous semester is still plagiarism according to university rules. Do not read anyone else’s manuscript or let them read yours. Abridged Summary: Title: 2 pts Abstract: 3 pts- Brief summary of the experiment and conclusions Introduction: 8 pts- Should at least a couple paragraphs for this manuscript explaining the background for the experiment and the questions asked by the experiment. Materials and Methods: 5 pts- Reference the lab protocol, but also describe the methods of the experiment enough that someone could precisely replicate the experiment only by reading your manuscript. Results: 13 pts- Column chart showing the sizes of the 25 largest circumference hardwoods in the upslope and downslope plots; p-values of 4 t-tests and 3 Fisher’s exact test results with tables showing mean and standard deviation for the t-test data and contingency tables for the Fisher’s exact test data. Discussion: 14 pts- Interpretation of the t-test and Fisher’s exact test results and discussion of what the results mean relative to the questions posed in the introduction. Also discuss how the hypotheses could be further tested and how the experiments could be improved. Should be at least a couple good paragraphs. Literature Cited: 2 pts- Properly cite the lab protocol and the websites described below. Composition: 3 pts- Ability to clearly communicate scientific results in writing.

 

 

 

Detailed instructions on how to write the research manuscript Title: Your title should be twenty words or less and must be different than the Lab Exercise name. Your title should be an informative and straightforward reflection of the factual content of the manuscript. 2 points Abstract: Abstracts are a brief, one paragraph summary of the hypothesis, results, and conclusions of the manuscript. The abstract will be redundant with information elsewhere in your manuscript, but that’s OK. After reading the abstract, scientists can decide if they want to read the rest of the manuscript for more details. 3 points Introduction: The Introduction gives necessary background to the reader of the manuscript, states the general hypotheses to be addressed, makes a brief statement summarizing the experiment to indicate how the hypothesis will be tested, and formulates specific predictions of possible results. The Introduction should specifically state the question or questions to be addressed by your study or experiments. You may wish to introduce these questions with a beginning phrase such as “In this report” or “In this experiment.” Most of the background and introductory information is already laid out in the lab protocol, but include anything you think is relevant background information and cite the lab protocol and the Duke Forest website listed below under Literature Cited. Your introduction should be a couple paragraphs long (background paragraph and hypothesis/questions paragraph). 8 points Materials and Methods: Cite the lab protocol, but be sure to include a description of how the lab was conducted so that anyone reading the manuscript could easily replicate the protocol. Also briefly describe how the analyses were performed (t-test p-values were calculated in Microsoft Excel 2008 for Mac, etc.). 5 points Results: In this section, you should summarize the data from the experiments without discussing the implications of the results or attempting to explain why particular results occurred. The data should be organized into tables and graphs. These should be labeled (e.g. Table 1, Figure 1) with a descriptive title. A brief sentence or two (legend) describing each table or graph should accompany the data. For this lab, include the following in your results: 1. Tables showing the mean and standard deviation of the circumference of the 25 largest hardwoods in the upslope plots and the downslope plots for the 2012 data. 2. Make a column chart showing the circumferences of the 25 largest hardwoods (not just the means) for 2012 upslope and downslope data. To do this, highlight the data for the 25 largest hardwoods in both the upslope and downslope, then create the simplest type of column chart (first choice). Excel will automatically color the upslope and downslope data differently. Your chart should look something like this (but with 25 trees instead of 10):

 

Ci rc um

fe re nc e (c m )

10 Largest Trees Upslope

Downslope

 

 

 

3. Results from 4 t-tests: a. t-test comparison (p-values) of 2012 data for the 10 largest hardwoods from upslope vs. downslope. b. t-test comparison (p-values) of 2012 data for the 25 largest hardwoods from upslope vs. downslope. c. t-test comparison of the 10 largest upslope hardwoods from 2012 vs. 2019. d. t-test comparison of the 10 largest downslope hardwoods from 2012 vs. 2019. Be sure to use a 2-tailed test, type 2 (equal variance) for all t-tests. 4. Results from 3 Fisher’s Exact Tests: Perform Fisher’s Exact Test in order to determine whether the proportion of pines and hardwoods differs between upslope and downslope. To perform the test, you’ll need to go to one of the following websites (any of the three should give you the same 2-tailed p- value): http://www.graphpad.com/quickcalcs/contingency1.cfm http://vassarstats.net/tab2x2.html https://www.socscistatistics.com/tests/fisher/default2.aspx For this test, we are only going to be looking at the mature trees that reach to the forest canopy, so only count pines and hardwoods over 80 cm in circumference (approximately 10 inches in diameter). Simply enter the number of pines and hardwoods for upslope and downslope into the 4 squares (Upslope and Downslope can be ‘groups,’ # of each tree type can go in the ‘outcomes’) and run a two-tailed Fisher’s exact test for the following:

A. # of Pines >80 cm and #hardwoods >80 cm upslope vs. downslope for your section B. # of Pines >80 cm and #hardwoods >80 cm upslope vs. downslope: other section C. # of Pines >80 cm and #hardwoods >80 cm for both sections combined

13 points Discussion: Interpret your results and draw conclusions from them. Avoid using the words “believe” and “belief” in science writing, as these words can have unclear and varied meanings to different readers. Instead of writing “I believe the results demonstrate,” write “The results demonstrate.” Nothing can be “proven” beyond all doubt in science. The very nature of science is that new data could potentially come along that would require us to adjust our understanding of something we thought we had “figured out.ʼ As such, you should never set out to ʻproveʼ or demonstrate the ʻtruthʼ about something. Instead, set out to ʻtest,ʼ ʻdocument,ʼ or ʻdescribe.ʼ Instead of saying “our data proves the hypothesis,” say “our data supports the hypothesis.” This section should have a brief restatement of your hypotheses and a discussion of how your actual results compare to your expected results. Did the results support your hypothesis? (discuss in terms of accepting/rejecting the null hypothesis) If your results were unexpected, you may wish to consider and address some of the following: Were the assumptions of the original hypothesis correct? Was the experimental design valid? While these issues should be considered, do not fall into the common trap of “looking for blame”. All experiments have some weaknesses in their design. However, for the purposes of this lab you should assume that your results are reasonable. Negative or inconclusive results can and will occur during this lab course. In such circumstances, you should suggest how further experimentation might clarify the areas of doubt in your data.

 

 

 

Focus on the following points for your discussion: • Describe whether or not the data and statistical tests support your predictions. • For any results that don’t support your predictions, give possible explanations as to why the results didn’t support your hypothesis; note any flaws in the lab procedure that may have influenced the results, but more importantly you should also mention possible biological reasons as to why the results might differ from what you predict. •Specifically address the following questions: Why did we use only the largest hardwoods for the t-tests rather than all the hardwoods? What do the number of small hardwoods vs. young pines (<60 cm) indicate? Why would you use only trees over 80 cm rather than all the pines and hardwoods for the Fisher’s exact test? Was the data similar between the two different lab sections? Does that give more confidence or less confidence in the results? The t-tests in part 3 c & d in the Results section above are specifically testing how well the data was replicated. Should there be a significant difference in measurements taken in the same forest area? Do you expect a high p-value or low p-value from those t-tests? 14 points Literature Cited: For this lab, you should cite the lab protocol (Kennesaw Biology 2021. Biology 1108 Laboratory Manual. “Ecology: Variation within Ecological Communities.” Kennesaw State University, GA.), the website you used to perform the Fisher’s Exact Test, and the following website: http://dukeforest.duke.edu/forest-environment/forest-succession/ . The Duke Forest website will give you a good general overview of old-field succession in the piedmont (Duke is in the piedmont of North Carolina, with the same soil type and very similar plant composition as Atlanta/Kennesaw), and you should even be able to predict how old the trees were in your plots. Here is how to properly cite the Duke website: Duke Forest at Duke University: Environment>>Forest Succession. 2021. Duke University. 3/29/2021. <: http://dukeforest.duke.edu/forest-environment/forest-succession/>. Here is how to cite the website for Fisher’s Exact Test: QuickCalcs: Analyze a 2×2 contingency table. 2021. GraphPad Software. 3/29/2021. <http://www.graphpad.com/quickcalcs/contingency1.cfm> In both cases, 3/29/2021 refers to the date you accessed the website. In general, it’s best to cite research published in peer-reviewed journals and not to cite web pages, but we’re making an exception here since most literature on piedmont forest ecological succession is pretty old and harder to access. 2 points

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Microbiology Assignment

Exam II BIO 235

 

 

1.A 37-week-old infant was delivered by cesarean section and discharged from a Connecticut hospital when he was 10 days old. Two days later he was lethargic and had a fever. When he was readmitted to the hospital, he had multiple brain abscesses caused by Citrobacterdiversus. After a prolonged illness, the baby died. A second infant with a normal pregnancy and delivery died of C. diversus meningitis after a short illness. Nine infants in the hospital nursery had umbilical cord colonization by Cdiversus. Environmental cultures were negative for hospital equipment.

 

a. What is the normal habitat of this gram-negative, facultatively anaerobic, non-endospore-forming, lactose-positive rod?

b.Provide a plan for identifying the source of infection and preventing further infection. (30 points)

 

 

 

 

Figure 14.4

 

2) Salmonella heidelberg gastroenteritis occurred on three cruises aboard the T.S.S. Festivale. Figure 14.4 shows on-board clinic visits for diarrheal illness between February 10 and March 3.

 

 

a. Explain the incidence pattern shown on the graph

.

b. What are probable modes of transmission?

 

c.. What changes would you recommend before the ship books more cruises after March 3?(30 points)

 

 

3. A 56-year-old Army officer received a smallpox vaccination at a military vaccination clinic. Within 2 weeks, a painful ulcer was noted at the vaccination site. Because of the appearance of an increasing number of peripheral lesions and because of continued enlargement of the initial ulcer, he was treated. Eventual recovery was complicated by Pseudomonas sepsis and the need for a skin graft at the vaccination site. What was the cause of the ulcer and lesions, and what were the treatments? What caused the Pseudomonas infection? (30 points)

 

4. In the West Branch Study what are your thoughts on how the investigation was done? It is a classic study. (10 Points)

 

 

1

Copyright © 2010 Pearson Education Inc

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Nutrition Homework

Assignment Instructions

Pick one of the following four case studies and respond to the questions. Your response should be 300 words or more.  Be sure to use references (APA formatting is suggested) to support your answers.  Here is an excellent reference:  https://www.eatrightpro.org/-/media/eatrightpro-files/practice/position-and-practice-papers/position-papers/nutritionathleticperf.pdf

Case 1: Vitamins

Roger is a starting guard on his college basketball team. He is a leader on his team, stays after practice to work on his shots, and is busy with academic and community life on campus. Because of his hectic schedule, he has little time for meal planning, grocery shopping, and food preparation. Dinner is usually consumed at the athletics training table during the week, and the rest of his meals are costumed either at home or at local restaurants. A 3-day food record kept by Roger recently was analyzed using a nutrition software program. The analysis revealed overall energy intake was not meeting his estimated needs, and vitamins A, C, and folate were consistently low throughout the three days. The rest of the vitamins and minerals met the minimum RDA or AI requirements.

  1. What questions should you ask Roger about his typical daily diet?
  2. What recommendations do you have for Roger to improve his dietary intake of vitamins and his energy intake?
  3. How can you help Roger meet these recommendations?

OR

Case 2: Minerals

Anne participates in triathlons. Recently, in a half-Ironman race, she experienced nausea, intestinal cramping, and diarrhea on the run, leading to poor performance. The entire race took her nearly 6.5 hours. During the bike portion, she consumed 100 oz of a relatively new sports beverage that she has been training with this year, as well as two gels. On the run, she consumed sips of the sports beverage provided on the course but switched over to water once she started experiencing nausea, cramping, and diarrhea. She was frustrated by her performance and wants to ensure that it does not happen again. You ask Anne to bring in the new sports beverage she has been consuming so that you can review the Supplement Facts label. Per 8 oz. serving, the following nutrients are provided: 60 calories, 15 g carbohydrates, 0 g protein, 0 g fat, 100 mg sodium, 50 mg calcium, 30 mg magnesium, and 100 mg potassium.

  1. What could be a potential cause of Anne’s nausea, intestinal cramping, and diarrhea during the race?
  2. How does Anne’s new sports beverage compare with others on the market?
  3. What recommendations would you give to Anne to prevent the symptoms from occurring in future races?

OR

Case 3: Fluids

Chad is a collegiate lacrosse player in Arizona. During the preseason and in-season training, the team will practice for hours, often in 80- to 90-degree weather. The coach incorporates fluid breaks during practice; however, he allows the athletes to consume only water. The coach believes that sports beverages hinder performance and therefore forbids the athletes to consume them. The athletes complain of feeling fatigued, lethargic, and light-headed by the end of practices.

  1. What are the problems in this scenario?
  2. What should the athletes do to feel better throughout their practices?
  3. What hydration principles should the athletes follow?

OR

Case 4: Weight Management

Ian is an 18-year-old gymnast training in a private gym with many other male and female gymnasts. He is competing at an advanced level and is likely to make the next Olympic team. Lately, he has been finding some of his balance and strength moves on the rings and parallel bars more difficult. He has gone through a bit of a growth spurt and has gained approximately 5 pounds over the last year. He suspects the weight gain is causing his performance difficulties. He decides to try a weight loss program that will help you lose weight before his next big competition in six weeks. He is not sure how many calories to consume and therefore, arbitrarily decided to eat 1,500 kcal per day.

  1. Which assessments are required to determine whether Ian needs to lose weight?
  2. What type of diet and exercise plan would you recommend for Ian?
  3. What additional concerns do you have for Ian’s health and sports performance?

Overview of Grading Rubric:

Points (100 total)

Content

33

Answered each question for the selected case

22

Question responses are substantial and thoughtful

15

References used to support answer

10

Free of grammar and spelling errors

10

Greater than 300 words

10

Submitted by the due date

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Microbiology Introduction Course With Lab

Microbiology for the Health Professions

Credits – 3 (Lecture) 1 (Lab)

Description

Overview

This course is designed to meet the microbiology prerequisite for students who are applying for admission to health profession programs. Most students taking this course will have an undergraduate degree and will be in the process of a career change. Online Microbiology is a one-semester course.  It will emphasize the concepts that are a necessary groundwork for courses the student will take in his/her professional program.

Topics covered in this course include: the history of microbiology, microbial morphology and physiology, bacterial metabolism, genetics, ecology, and the classification of microorganisms, particularly bacteria, fungi, and viruses. Therapeutic agents used to disrupt and control microbial growth are considered and a body systems approach is utilized in the coverage of diseases.

Materials

Textbook

· Microbiology: A Human Perspective Eugene W. Nester et.al., 7th edition

Note: The e-book version of Nester may not be used on any proctored course exam. Textbooks need to be purchased separately and are not part of your registration fee. All course materials are available through our bookstore at http://www.newengland.bkstr.com

Laboratory Components

It is mandatory for students enrolled in the laboratory component of the course to order a lab kit. The kit must be purchased directly through Hands on Labs and cannot be purchased second hand or from another vendor. Students enrolled in lab must complete both parts of every lab – the assigned experiment and the corresponding assignment online – to earn a grade for the lab. The kits must be ordered immediately upon enrollment in order to ensure materials are on hand for the start of the course. Note: Kits can take 5 – 7 business days to arrive. Go to this link: https://www.holscience.com/mm5/merchant.mvc?Screen=LOGN

1. ENTER Login: C000384

2. ENTER Password: labpaq

3. Choose LP-2231-MB-02: LabPaq, Microbiology, 11 Labs

4. Review the HOL Return and Refund Policy

Learning Objectives and Outcomes

Course Objectives

Upon successful completion of the course students will be able to:

1. Define basic structure/function of microorganisms including prokaryotes, eukaryotes and viruses, with emphasis on their relationships to human disease and treatment modalities

2. Describe the kinetics and patterns of microbial growth, and environmental factors that alter growth

3. Describe key features of microbial genetics, including DNA structure and function, as well as mechanisms of DNA replication, transcription and translation

4. Explain how and why microbial gene expression is regulated, as well as how genetic mutation and DNA transfer mechanisms affect microbial evolution, fitness and pathogenesis

5. Define and compare beneficial versus pathogenic host-microbial interactions

6. Explain fundamental stains, basic staining techniques, and corresponding bacterial and fungal morphology

7. Describe the clinical manifestations associated with common bacterial, viral, fungal, and parasitic diseases

8. Describe the uses of the various media and metabolic/enzymatic testing protocols

9. Identify bacterial/fungal toxic and invasive factors and their relationship to the pathogenesis of disease

10. Classify the mechanisms of antibiotic (antibacterial/antifungal), antiparasitic, and antiviral activity, as well as resistance strategies employed by target microorganisms

11. Identify the pathogens commonly associated with infections of the skin, eyes, nervous system, respiratory tract, gastrointestinal tract and genitourinary tract in humans, as well as their modes of pathogenesis and risk factors associated with each type of disease

12. Identify common healthcare-associated (nosocomial) pathogens

13. Identify disease and likely etiology on the basis of patient signs and symptoms, pertinent history, and lab findings

14. Create a case study outline.

Assignments

Lectures and Laboratories

Our textbook allows students to utilize CONNECT from McGraw-Hill to go through the lecture course material with Learnsmart. This is a good self-assessment tool. The access code for CONNECT may be purchased using a link located within the course homepage in Blackboard.

 

Laboratory Information:

For the laboratory portion of this course, you will be be purchasing a LabPaq lab kit from the Hands On Labs (HOL). Your instructor will provide you with a link that is unique to your class. You will use this link to create an account and set up your profile and submit your work. Additional directions for Getting Started with HOL can be found in the COURSE INFORMATION section of the course.

 

Laboratory Assignments

For students enrolled in the laboratory component, most weeks have an associated laboratory assignment. Complete each assignment online using the HOL Online link provided by your instructor.

Using the HOL resource material, your notes, and in some cases outside research, answer all of the questions in each lab exercise. Your answers must be in the form of complete and grammatically correct sentences with proper spelling, grammar, and capitalization. Be mindful of the spelling for bacterial genus and species names (capitalize genus names, lower case for species names, eg., Streptococcus pyogenes). If a question is asking for terms you are not familiar with, be sure to define and understand those before you answer the question. Reference your facts using in-text citations and AMA format for your outside references.

Once you complete the lab, use the text submission field for this assignment in Blackboard to write a message to your instructor to say that you have completed the assignment. This will serve as an alert to your instructor that your assignment is ready to be reviewed and graded.

Chapter Tests, Vocabulary Quizzes, and Unit Exams

Chapter Tests

The chapter tests are multiple-choice and matching. The tests can be accessed by clicking on the link in Blackboard. The chapter tests are open book and are intended to help you review for the unit exams. They are timed and you have three attempts at each test; the questions for each attempt cover the same material, although they may be different. The highest of the three attempt grades will be recorded in the grade book. If you take the test only once, that grade will be recorded in the grade book. To prepare for the chapter tests, complete the readings, view the lecture material, and review using the CONNECT and other study helps posted in the chapter module. Also, review the end-of-chapter questions and other study aides in your textbook. When you are ready, take the test. If you wish, you may review the material and take the test a second or third time.

Module Vocabulary Quizzes

Each module has a 20-term vocabulary quiz. The terms are selected from the chapter vocabulary lists. The quizzes are taken online through the Blackboard site. Each quiz is accessed by clicking on the link in Blackboard. The quizzes are open book and are intended to help you review for the unit exams. To prepare for the vocabulary quizzes read through the lists of terms for each chapter within the module. Fit the terms into the context of the learning objectives for each chapter. The vocabulary quizzes are timed and you have three attempts at each quiz. When you are ready, take the quiz. If you wish, you may review the material and take the quiz a second or third time.

Unit exams

The five unit exams are timed exams (120 minutes) consisting of multiple choice and matching; with all questions graded automatically upon the completion of the unit exam. These unit exams are single-attempt (with no pauses allowed during the 2-hour time frame) and may be taken only once. The unit exams will be available only after all the quizzes, tests and other assessments in the unit are completed. The exams will include topics covered in the textbook, learning objectives, and lectures for each unit. These exams are open notes and open book; however, you should review the material as though you will not have the notes or book available. There will not be time during the exam to look up every answer. Of the 5 unit exams, your 4 highest exams will count toward your final grade (the lowest score will be dropped). NOTE: Do not schedule your unit exams with ProctorU. Only the HOL Laboratory Final Exam (if you are taking the lab) and the lecture Final Exam need to be proctored.

 

The Microbiology Case Study

You will create a case study for a microbial infection selected from the current pathogen list which your instructor will provide to you. Your case study will be assembled using a detailed rubric. Upon completion, and by a specified due date (within Unit 5), your case study will be submitted using the Blackboard website.

 

Final Exam

The cumulative BIOL 1020 lecture final is a proctored test so plan for at least a three-hour exam period consisting of multiple choice, matching, and short answer questions. It is open book and open notes; however, no electronic memory devices may be used, including but not limited to the internet, other files on a computer, cell phones, tablet devices, smartphones, e-books, etc.

If you have information you wish to use on the Final Exam, it will have to be printed out or hand-written and there are no exceptions to this policy.

HOL Laboratory Final Exam – For Students Enrolled in the Laboratory 

The cumulative BIOL 1020 laboratory final is a proctored test. Plan for at least a three-hour exam period consisting of multiple choice, matching, and short answer questions. It is open book and open notes; however, no electronic memory devices may be used, including but not limited to the internet, other files on a computer, cell phones, tablet devices, smartphones, e-books, etc.

If you have information you wish to use on the HOL Laboratory Final Exam, it will have to be printed out or hand-writtenand there are no exceptions to this policy.

 

Discussion Board Posts

Discussion questions cover interesting current events or materials that contribute to a deeper understanding of key concepts and allow you to interact with your classmates and the instructor. Most of the discussion questions are designed to accompany particular chapters (see specific discussion questions for more information). Each question will require you to conduct internet research, read additional materials (a short journal or magazine article), visit a specific webpage, or view a short video. Then you will write a response following the guidelines in the assignment.

To earn full credit: you will need to post a response, respond to the original posts of at least two other students, and then contribute to an ongoing discussion. For special cases where one or two students are accelerating faster through the course, the instructor will participate in the discussion so that everyone has the opportunity to interact.

Discussion Question Guidelines

1. Read the assignment carefully so that you are familiar with the materials that you need to cover and how to craft your post.

2. Respect each other’s ideas, feelings, and experience. Some of the questions involve areas of disagreement. Expect your classmates to have different opinions.

3. Use proper writing style. Correct spelling and sentence structure are expected just as if you were writing a regular paper. Use spell check and grammar check before you submit.

4. Write your posting in a word document! That way you can save a copy and use spell check and grammar check.

5. Cite the sources that you use to write your response. Follow the AMA guidelines.

6. Avoid posting large blocks of text. Break your writing into paragraphs and use a space between paragraphs to make your posting easier to read online.

7. Subscribe to the discussion so that you get email updates when there is activity.

8. Use the “reply” button rather than the “compose” button when responding to someone else’s post.

9. When responding to a classmate, address them by name.

10. Do not use postings such as “I agree,” “I don’t know either,” or “ditto.” They do not add to the discussion, take up space on the Discussions, and will not be counted.

11. Everyone benefits from an active discussion. Check back in frequently to see what others are saying.

12. Plan your time carefully. You will need to give your classmates time to respond to your postings. This is an asynchronous class where students will be in different points of the class.

13. Contact your instructor if there are schedule problems or other issues that need to be resolved.

Examinations and Grading Information

For students taking the lecture course only, the final course grade will be determined as follows:

Chapter Tests and Module Vocabulary Quizzes 20% of the final grade
5 Unit Exams (drop lowest score; 4 in total) 20% of the final grade
Final Exam 20% of the final grade
Case Study 20% of the final grade
Discussion Boards 20% of the final grade
Total Course Grade 100%

 

For students taking the lecture course with the laboratory, your final grade will be determined as follows:

Chapter Tests and Module Vocabulary Quizzes 20% of the lecture grade
5 Unit Exams (lowest score is dropped, 4 total) 20% of the lecture grade
Final Exam 20% of the lecture grade
Case Study 20% of the lecture grade
Discussion Boards 20% of the lecture grade
Total 100% of the lecture grade
12 Laboratory Exercise Assessments

HOL Laboratory Final Exam

60% of the laboratory grade

40% of the laboratory grade

 

Final Grade  
Lecture Grade 75% of Final Grade
Laboratory Grade 25% of Final Grade
Total Course Grade 100%

A letter grade is assigned according to the scheme below. The final course grade will not be posted until all the quizzes, tests, exams, and case study, are completed. For those students taking the laboratory, all lab exercise assessments and the laboratory Final Exam must be also be submitted.

Grade Scale

Grade Points Grade Point Average (GPA)
A 94 – 100% 4.00
A- 90 – 93% 3.75
B+ 87 – 89% 3.50
B 84 – 86% 3.00
B- 80 – 83% 2.75
C+ 77 – 79% 2.50
C 74 – 76% 2.00
C- 70 – 73% 1.75
D 64 – 69% 1.00
F 00 – 63% 0.00

Schedule

Course Outline

Microbiology BIOL 1020

Lecture and Lab Schedule

Unit Module Lecture topic Textbook chapter HOL Laboratory Exercise
1. Life and Death of

Microbes

1 Humans and the Microbial World 1 #1: Microbiology Laboratory Preparation
    The Molecules of Life

(Note: There is no lecture or quiz for Chapter 2. You need to be familiar with the topics, but will not be asked specific questions from this chapter on the exam.)

2  
    Microscopy and Prokaryotic Cell Structure 3  
  2 Dynamics of Prokaryotic Growth 4 #2: Microscopy for Microbiology
    Control of Prokaryotic Growth 5  
  3 Metabolism: Fueling Cell Growth 6 #3: Aseptic Technique and Culturing Microbes
    Review for and take the Unit I Exam  
2. Microbial

Genetics and

Diversity

4 DNA to Proteins 7 #4: Bacterial Enumeration – Dilutions and Plate Counts
    Bacterial Genetics 8  
    Biotechnology and Recombinant DNA 9  
  5 Identification and Classification of Prokaryotic Organisms 10 #5: Bacterial Morphology and Staining Techniques
    The Diversity of Prokaryotic Organisms 11  
    The Eukaryotic Members of the Microbial

World

12  
  6 Viruses, Prions, and Viroids: Infectious Agents of Plants and Animals 13 #6: Antibiotic Sensitivity – Kirby Bauer Diffusion Test
    Review for and take the Unit II Exam  
Unit Module Lecture topic Textbook reading HOL Laboratory Exercise
3. Microorganisms

and Humans

7 The Innate Immune Response 14 #7: Biochemical Testing For Microbial Identification – Methyl Red, Voges-Proskauer, and Catalase
    The Adaptive Immune Response 15  
  8 Immunological Disorders 17 #8: Biochemical Testing For Microbial Identification – Carbohydrate Fermentation Testing
    Applications of the Immune response 18  
  9 Host-Microbe Interactions 16 #9: Bacterial Identification Through Functional Media – Motility Testing
    Epidemiology 19  
  10 Antimicrobial Medications 20 #10:Environmental Influences on Microbial Growth – Salt Tolerance and pH Testing
    Review for and take the Unit III Exam  
4. Infectious

Diseases

11 Respiratory Infections 21 #11: Fomite Transmission
    Skin Infections 22  
  12 Wound Infections 23 #12: Food Safety
    Digestive System Infections 24  
  13 Genitourinary Infections 25  
    Nervous System Infections 26  
  14 Blood and Lymphatic System Infections 27 HOL Laboratory Final Exam: Prepare for the Laboratory Final Exam
    HIV Disease and Complications of Immunodeficiency 28  
    Schedule your HOL Laboratory Final Exam with ProctorU (at least one week prior to taking the exam)

Review for and take the HOL Laboratory Final Exam

Review for and take the Unit IV Exam

Request the current pathogen list from your instructor for your Case Study!

5. Applied

Microbiology

15 Microbial Ecology 29  
    Environmental Microbiology 30  
    Food Microbiology 31  
  16 Review for and take the Unit V Exam

Submit your Case Study!

Schedule your Final Exam with ProctorU (at least one week prior to taking the exam)

Review for and take the Final Exam

 

Student Resources

Course Length

A schedule of lectures and assignments is included in this syllabus. This is, however a self-paced course and you can complete the course in less time.

1. Courses in SPHP program are equivalent to one-semester courses designed to be completed in 16 weeks

2. Enrollment in the course begins the day your section opens which is listed in the Academic Calendar found on the Student Success Portal.

3. Course start and end dates are in respect to Eastern Standard Time.

Incomplete Grade Policy

Students are expected to complete all course work by the end date of the course. To view the incomplete grade policy, please click here.

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"