Photosynthesis Lab

Biology 1406

Photosynthesis Lab

 

Objectives:

· Observe oxygen produced by photosynthesis

· Determine pigments in plants that allow for photosynthesis

 

 

Terms:

· Chromatography

· Photosynthesis

· Autotroph

 

Materials Needed:

 

 

Exercise 1

· 4 large beakers or clear bowls/cups

· 4 small beakers or clear bowls/cups

· Light source (lamp or window)

· Fresh spinach (or other soft) leaves

· Baking soda

· Paper towel

 

 

 

Exercise 2

 

· 1 Tall beaker or glass

· Pencil or pen

· Coin (quarter, nickel, dime or penny)

· Paper towel

· Coffee filter

· Fresh spinach (or other soft, dark green) leaf

· Rubbing alcohol

· Tape (or something else to secure filter)

· Plastic wrap (not necessary but helpful)

 

 

 

Introduction

 

Photosynthesis is the process by which autotrophic organisms make their own food in the form of glucose using light energy from the sun and carbon dioxide. Autotrophic organisms include; plants, some bacteria and some protists (eukaryotic organisms such as algae). Photosynthesis takes 6 carbon dioxides, 6 water molecules and energy from sunlight to form a single glucose and 6 oxygen molecules (see figure 1).

Autotrophic organisms will then utilize the glucose produced for cellular respiration to get ATP from it. The only difference in cellular respiration in autotrophs versus heterotrophs (organisms who consume other plants and animals for energy) is where the glucose for cellular respiration comes from. Autotrophs get their glucose from photosynthesis while heterotrophs must eat another organism to obtain a glucose for cellular respiration.

 

Figure 1: Photosynthesis equation. Showing the reactions uses 6 carbon dioxides, 6 water molecules and energy from the sun to form glucose and 6 oxygen molecules.

(Image source: Professor Mello)

Exercise 1: Photosynthesis

 

First we will look at photosynthesis in plants. In this experiment you will compare the amount of photosyn- thesis produced by spinach leaves under varying conditions such as water with baking soda added. Baking soda when placed in water will release carbon dioxide molecules into the water.

Procedure 1—

1. Obtain 4 large beakers or clear bowls/cups. And 4 small beakers or clear cups/bowls. The key here is that you want the smaller beakers/bowls to fit inside the larger ones and you need enough room that you can turn the small beaker upside down while its inside the larger beaker. Meaning you want to be able to put the small beaker inside the larger facing up. Then turn the small beaker upside down without pulling it out of the larger beaker to do so.

2. In one of the large beakers fill it about 3/4 of the way full with regular water. You want the water lever in the large beaker to be taller than the smaller beaker.

3. Fill the remaining 3 beakers with the same amount of water that you filled the first.

4. Label one beaker control light, and one control dark, set them both aside. These two beakers will just have regular water in them.

5. To the next beaker add a tablespoon of baking soda and stir to dissolve.

6. Continue to add baking soda to the beaker one table spoon at a time, stirring in-between tablespoons, until the water becomes slightly cloudy.

7. Add the same number of tablespoons of baking soda to the remaining beaker.

8. Label one beaker light, and one dark.

9. Take one of the control beakers, place it on a paper towel, towel, or in a sink, to prevent a mess occurring for the next couple of steps as water may splash out.

10. Place a small beaker in one of the control beakers face up

11. Place 3 spinach leaves inside the submerged small beaker.

12. Carefully turn the smaller beaker upside down while keeping it submerged in water. You want to prevent any air from getting inside the small beaker

13. If your spinach leaves float out carefully stuff them back up underneath the small beaker without getting any air bubbles in the smaller beaker. If air bubbles occur turn the small beaker right side up, remove the air bubbles and try again. See figure 2 for an example of what the completed setup should look like.

14. Repeat this process for the remaining 3 beakers.

15. Place the control dark and dark beakers in a cabinet or under a cover to keep them in the dark.

16. Place the control light and light beakers in a window sill or by a bright light.

17. Observe the small beakers for bubbles once every 5 minutes for 20 minutes.

18. Rank the amount of bubbles on a scale of 0-5. 0 = no bubbles, 5 = lots of bubbles.

19. Record the results in the student handout portion of the lab.

 

 

 

Figure 2. Image A shows the setup using a measuring cup and a small bowl instead of beakers. Image B shows the setup using two beakers. Image c shows that there are no bubbles in the smaller beaker/bowl with initial setup. Image D shows what the bubbles will look like as they form over time.

(Image source: Professor Mello)

 

Exercise 2: Chromatography

 

Photosynthetic organisms capture the energy from sunlight utilizing pigments. Plant leaves tend to have multiple pigement types in them so they can absorb multiple wavelengths of light. These pigments are what give plant leaves their colors. Most plants have pigments that absorb all wavelengths except for green light. Green light is instead reflected back or transmitted which is why most plants appear green. All things that we see as color reflect back the wavelength of light you see and absorb or transmit (allow to pass through) all other colors.

So if a shirt is red its either absorbing or transmitting all wavelengths of light except red. The red wavelength is being reflected back and that is what your eyes see. Black and white colors are the exception to this. A black tshirt absorbs all wavelengths of light so black is actually the absence of color wavelengths being reflected into your eye. While a white shirt reflects all wavelengths of light, your brain process all wavelengths being reflected together as white. This is why black shirts can be much hotter than other color of shirts on a sunny day, the black shirt absorbs all of the light energy, a white shirt is generally the coolest color of shirt to wear on a hot day as it reflects of all the sun’s energy.

In this procedure we will separate the pigments in spinach leaves so you can see how many pigments the plant uses to perform photosynthesis.

 

 

Procedure:

 

1. Obtain a tall cup or beaker.

 

2. Obtain a coffee filter or piece of chromatography paper. Cut it into long rectangular strip that is an inch wide and long enough to reach from the top of your beaker to the bottom (see figure 3 for an example setup). Try to touch the strip you cut by the edges, oils on your hands can be absorbed by the paper and mess up the experiment.

3. Measure half an inch up from the bottom of the strip and place a spinach leaf on it.

 

4. Use a coin to rub the spinach leave over the line multiple times until the green from the leaf has been

rubbed into the paper, see figure 3 for an example.

 

5. Tape the top of the strip (part furtherest away from your green spinach line) to a pencil or pen and hang it inside the beaker (see figure 3 for an example of setup).

6. Carefully pour rubbing alcohol into the bottom of the beaker you want enough to get the bottom of the strip wet but not enough to cover the green spinach line.

7. Place a plastic wrap over the top of the beaker to help prevent evaporation.

 

8. Allow the experiment to run until the alcohol is about an inch from the top of the strip.

 

9. Remove the strip from the container and observe the different pigment lines.

 

10. Identify which pigments you see using figure 3 as a reference.

 

 

 

Figure 3. Image A shows the chromatography strip with a quarter and spinach leaf ready to be used. Image B shows the spinach

leaf about an inch up on the paper and the quarter is about to be used to rub the spinach. Image c shows the quarter rubbing a line along the spinach leaf to transfer pigment. Image D shows the green leaf pigment that has been transferred to the paper

successfully. Image E shows the complete final setup with the chromatography paper attached to a pen and hanging in a beaker.

Notice the bottom of the paper touches the bottom of the beaker.

(Image source: Professor Mello)

 

Name:

 

Biology 1406

Lab 1: Student Handout

 

Exercise 1 Photosynthesis

Rank the amount of bubbles on a scale of 0-5. 0 = no bubbles, 5 = lots of bubbles. Record your observations in the table below.

 

Treatment 0 min 5 min 10 min 15 min 20 min
Control Dark          
Dark          
Control light          
Light          

 

 

1. Which treatment(s) produced the most bubbles? Why?

 

 

 

 

 

2. Which treatment(s) produced the least bubbles? Why?

 

 

 

 

 

3. What was the purpose of the baking soda? Why was it necessary for photosynthesis?

 

Exercise 2 Chromatography

Draw your completed chromatography strip below and label the pigments. You may use colored pencils if available or draw it in black and white labeling the color of each line as well as the pigment.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Why do plants utilize multiple pigments for photosynthesis? What is the benefit or drawback of using multiple?

 

 

 

 

 

 

 

 

5. What color does each of the pigments you saw reflect back? What color(s) do they each absorb?

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Medical Billing And Coding

A physician performed an aspiration via thoracentesis on a patient in observation status in the hospital. The patient has advanced lung cancer with malignant pleural effusion. Later the same day, due to continued accumulation of fluid, the patient was returned to the procedure room and the same physician performed a repeat thoracentesis.

 

Report diagnosis and procedure codes. Do not report observation codes.

 

Assign the correct codes and modifier for this encounter.

 

ICD-9-CM and CPT Code(s):__________________

 

ICD-10-CM Code(s):________________________

 

A 12-year-old boy presents with his father to the ER due to open wounds to his arm, hand, and upper leg. The injury occurred when the boy fell on a barbed-wire forearm, right hand, and left thigh. Procedure: Suture repair of the following: single-layer closure, 4.0cm, forearm, layered closure, 3.0cm, hand; 6.0 simple repair, thigh.

 

ICD-9-CM Reason for Visit Code(s):_____________________________________

ICD-9-CM and CPT code(s):________________________________________

ICD-10-CM Reason for Visit Code(s):_________________________________

ICD-10-CM Code(s):___________________________________

 

From the health record of a patient seen in the emergency room/observation area for an allergic reaction:

Discharge Summary

Date of Discharge: 01/08/XX

Chief Complaint: Allergic reaction to Bactrim, resulting in angioedema and mild respiratory distress.

Hospital Course: Fifty-six-year-old male admitted for angioedema after taking Bactrim for an ear infection. The patient had mild respiratory distress and marked swelling of his hands, face, and his oropharynx. The patient was given IV steroids in the Emergency Room and was admitted overnight for observation. The patient’s swelling rapidly improved and by the morning after his admission he was back to baseline. He had no complaints of shortness of breath and desired to go home.

Condition on Discharge: Good. Activity: As tolerated. Diet: As tolerated.

Medications: Home medications only including:

1. Celebrex 200 mg one b.i.d.

2. Isosorbide 30 mg once a day.

3. Atenolol 25 mg per day.

4. Lipitor 10 mg per day.

Follow-Up: Will be as needed with primary care physician if ear problem returns and/or respiratory distress.

Emergency Assessment

Chief Complaint: Swelling, itching, and change in voice.

Present Illness:  This is a 56-year-old white male with a history of allergic reaction to an antibiotic in the past, who presents today after taking his second dose of Bactrim this morning at home. He then had acute onset of swelling, redness, itching, and change in voice; also states that he was slightly short of breath but no wheezing. He denies any nausea, vomiting, fevers, chills.

Past Medical History: Coronary arter disease, MI 2 years ago, is currently take Celebrex, Isosorbide, Atenolol, Lipitor, and Bactrim that he just started on his morning.

Physical Examination:  Appears very red, swollen diffusely with erythematous rash, macular type rash. Blood pressure is 145/77, heart rate of 120, respiration rate 18 and 02; saturation is 96%. On room air. HEENT: He does have swollen eyelids, both upper and lower eyelids, with also some facial swelling and some uvular swelling as well as some lateral pharyngeal and uvualr swelling, which appears to be allergic in nature. His tongue appears also slightly swollen, does not have any neck swelling, also has an erythematous rash. Lungs: Clear to auscultation with no wheezing noted. Abdomen: Soft, nontender.

Ed Course: Received Benadryl 25 mg IV, Pepcid 20 mg IV, Solu-Medrol 125 mg IV. At this point, his voice was still changing, and decision was made to admit the patient to the hospital for observation and then to observe and given a second dose of Solu-Medrol and Benadryl. Consultation between patient’s private physician.

Select the correct codes for this observation patient.

a. 961.0, 786.09, 995.1, 693.0, E857, E849.0

b. 995.20, E931.0, E849.0

c. 995.1, 786.09, E931.0, E849.0

d. 995.1, 786.09, 693.0, E930.9, E849.0

 

ICD-10-CM Code(s):_____________________________

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

HSCI 430 Assignment

This week you read about organization dynamics that influence health disparities in diverse populations. Review the questions below and reflect on what you learned. Answer the questions by reflecting on what you learned and synthesizing that information to create solutions. 

1. Imagine you are the CEO of a health care clinic in a rural area. Over the past five years, there have been increasing complaints about the lack of diversity in age among the clinic staff. In particular, complaints have skyrocketed regarding the young staff and lack of cultural sensitivity to the aging population. The board of trustees is concerned and called a meeting with you to discuss this. During the meeting, they blamed you for not ensuring better age diversity in staff. Now you must respond and remedy the situation. You were told to create policies and practices to increase diversity.

a. Identify two policies (i.e. rules) and practices (i.e. procedures) the clinic will begin implementing that will help in the recruitment and retention of older staff.

b. Describe how and why these policies and practices would be beneficial to the clinic.

c. Then, describe how the same policies might benefit employees from other groups, for example, individuals of a different age, gender, race, ethnicity, religion, and so on. In other words, how might these policies and practices benefit those who are different from the older staff?

2. Refer to Figure 3.1 in your text. How do you think the social factors that contribute to disparities in workforce for minorities can be overcome? Hypothesize one micro, one mezzo (meso), and one macro level practice that can be done to change the workforce and career outcomes shown in the figure. You should come up with a total of three ideas.

If you need clarity about the difference between micro and macro, here is an article that provides an excellent breakdown using the field of social work: https://dworakpeck.usc.edu/news/do-you-know-the-difference-between-micro-mezzo-and-macro-level-social-work

Micro idea:

Mezzo idea:
Macro idea:

3. Review the healthcare organization checklist from chapter three in your text. If you work in a health care organization, use the assessment checklist in this chapter to evaluate the organization’s responsiveness to diversity. If you do not work in a health care organization, use the checklist to evaluate a health clinic that you are a patient at. Another option is to evaluate your place of employment or your academic institution. Though all items on the list may not fully apply, it is still ok to use these organizations to complete the assignment. Later in the course you will complete an organizational assessment (ORGANX) so it is important for you to become familiar with evaluating organizations now.

a. What are the organization’s areas of strength?

b. Which areas need the most improvement?

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

BIO – Evaluate The Following Lac Operon Partial Diploids

1. (1 point) Evaluate the following lac operon partial diploids. Indicate whether the production of functional β-galactosidase from lacZ and of permease from lacY is “inducible”, “constitutive”, “absent” or “noninducible” for each partial diplod
a. F’ I+-p+o+Z+Y+ X F- I+p+o+Z-Y-
b. F’ I+-p+ocZ+Y- X F- I+p+o+Z-Y+ c. F’ I+-p+ocZ-Y+ X F- Isp+o+Z+Y+
2~3 Describe the effects on attenuation and on tryptophan synthesis of the following mutations of the two tryptophan codons (UGGUGG) in the attenuator region of operon.
2. (1 point) The tryptophan codons are mutated to UAGUGG. 3. (1 point) The tryptophan codons are mutated to UUGUUG.
4. (1 point) What would be the phenotype of a null mutation in the CRP protein gene in the regulation of Lac operon and why?
5. (1point) What would be the phenotype of a “constitutively expressed” mutation in the CRP protein gene in the regulation of Lac operon (i.e. CRP proteins are always highly expressed) and why?
6. (2 points) A repressible operon system, like the trp operon, contains three genes, G, Z, and W. Operon genes are synthesized when the end product of the operon synthesis pathway is absent, but there is no synthesis when the end product is present. One of these genes is an operator, one is a regulatory protein, and the other is a structural enzyme involved in synthesis of the end product. In the table below, “+” indicates that the enzyme is synthesized by the operon, and “-“ means that no enzyme synthesis occurs. Use this information to determine which gene corresponds to each operon function.
Present
G+Z+W+   +
G-Z+W+   + G+Z-W+   – G+Z+W-      + G-Z+W+/G+Z-W-      + G+Z-W+/G-Z+W-      + G-Z-W-/G+Z+W+      + G+Z+W-/G-Z-W+      +
7. (1 point) Gene A is maternally imprinted (silenced) while Gene B is paternally imprinted when imprinted silencing occurs. A Mom with Genes A and B imprinted and a Dad with an imprinted Gene A have a daughter and a son. The children then marry individuals known not to be silenced for either gene. What is the imprint status of the daughter and son respectively? If each marriage results in the birth of a daughter and a son, what would you expect the imprint status of genes A and B to be for the grandchildren?
8 ~ 9. On a rare occasion, human can be born with a condition known as “uniparental disomy”. This happens when an individual inherited both copies of a chromosome from one parent but no copies from the other parent. For example, abnormal sperm that lacks chromosome 15 can fertilize an egg that contains two copies of chromosome 15. This is known as maternal uniparental disomy 15. Alternatively, there are cases of paternal disomy 15 (an abnormal sperm with two copies of chromosome 15 fertilizes an egg with no copies).
8. (1 point) If a female is born with paternal disomy 15, would you expect her to be normal or have Angelman syndrome (AS) or have Prader-Willi syndrome (PWS)? And explain why?
9. (1point) Would you expect her to produce normal offspring or offspring affected with AS or PWS?

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"